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Abstract

To achieve robustness against different images, a novel
region-based geometric deformable model framework em-
ploying neighboring information constraints is proposed.
The fundamental power of this strategy makes uses of the
image information at the support domain around each point
of interest, thus effectively enlarges the capture range of
each point to have a better regional understanding of the
information within its local neighborhood. In other words,
we establish the Mumford-Shah energy functional on each
image point with its local neighborhood in a way such that
it is capable of providing sufficient information to define a
desired segmentation which is robust against intensity inho-
mogeneity and noise impact. The resulting partial differen-
tial equation is solved numerically by the finite differences
schemes on pixel-by-pixel domain. Experimental results on
synthetic and real images demonstrate its superior perfor-
mance.

1. Introduction

It has been the fundamental goal of many efforts in com-

puter vision community to identify regions with similar pat-

terns in images. Approaches to this segmentation problem

typically fall into two groups. The first one formulates as

an energy minimizing contour with smoothness constraints

deformed according to image data, including notable para-

metric active contour model [4]and geometric active con-

tour model[1, 7]. One attractive feature of geometric active

contour is that it can naturally handle changes in topology

of the evolving contour.

The second group attempts to find object boundaries us-

ing region-based approaches based on level sets method,

offering efficient alternatives to the edge-based algorithms

for active contours[2, 10, 11]. These region-based geomet-

ric deformable models have received a large amount of at-

tention in recent years. The major advantages of using the

region-based approaches over edges-based methods include

the following. First, with this scheme, it does not use the

gradient to detect boundaries, which allows it to segment

color and multi-spectral images where there are no clear

gradient-boundaries. Seocnd, these region-based models

are less sensitive to the location of the initial contours. Fi-

nally, these models have better ability to capture concavities

of objects and less sensitive to noise. The most celebrat-

ing region-based model was introduced by Mumford and

Shah[8], the model is designed to both extract the boundary

of distinct regions while smoothing the image within these

regions. Inspired by the basic idea of the Mumford-Shah

mdoel, in [2],Chan and Vese reduced the model into piece-

wise constant Mumford-Shah model, and solved it in the

framework of level set. The piecewise constant Mumford-

Shah model has been one of the most popular region-based

segmentation strategies in recent years.

Even though piecewise constant Mumford-Shah models

are very promising, these algorithms still have certain draw-

backs. The serious drawback of the algorithm is its lacking

the ability to deal with images of intensity inhomogeneity,

since they assume that an image consists of statistically ho-

mogeneous regions. Secondly, they may be sensitive to lo-

cal minima in the noisy images. However,intensity inhomo-

geneous is very common in real images, especially among

biomedical images.

In order to overcome these problems and achieve robust-

ness against varying imaging conditions, several new mod-

els have been developed and successfully applied to image

segmentation. In [12], a multiphase level set framework

for image segmentation using the Mumford-Shah model for

piecewise smooth optimal approximations has been devel-

oped, which is the straightforward extension of their orig-

inal work[2]. In [11], the authors also proposed a similar

model that was able to segment images with intensity inho-

mogeneous. However, in reality,these models are difficult in

implementation and computational inefficient as discussed

in[5]. More recently, local methods are used to deal with

inhomogeneous images. A kernel function to define a local
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Figure 1. Comparison the solution images of the piecewise con-

stant Mumford-Shah model and our model after initialization.

Top: the result of piecewise constant Mumford-Shah model. Bot-

tom: the result of our model

binary fitting energy in a variational formulation has been

introduced[5]. In this model, the authors used a kernel func-

tion to control the size of the neighborhood, and the size of

neighborhood are the same for all the pixels in the image.

In [3], a nonparametric model for simultaneous image seg-

mentation and smoothing based on local integration of the

probability density functions has been proposed.

1.1. Contributions

Motivated by the idea proposed for edge-based

segmentation[6], we realize that, for region-based active

contours, more robust results can be achieved if the behav-

ior of any individual point is constrained by both local im-

age information of itself and that of its neighboring points.

These inter-point relationships provide an expanded local

view, and the global view in the extreme case when all the

image points are considered, which becomes the same one

as the Chan-Vese model[2].

This paper presents a novel region-based geometric de-

formable model that makes use of the image information at

the support domain around each point of interest, thus ef-

fectively enlarges the capture range of each point to have

a better regional understanding of the information within

its local neighborhood. In other words, we establish the

Mumford-Shah energy functional on each image point with

its local neighborhood in a way such that it is capable of

providing sufficient information to define a desired segmen-

tation which is robust against intensity inhomogeneity and

noise impact.

Figure 2. Left: Segmentation results with smaller influence

domain–the image is segmented into two different objects, more

fine details are preserved. Right: Segmentation results with larger

influence domain–the image is smoothed heavily, and only one

object is detected.

2. Methodology

2.1. The Mumford-Shah Functional

Let Ω be a bounded open subset of Rn, and I0 : Ω → R
be an observed image. The behavior of the curve C sub-

ject to image information in Mumford-Shah formulation is

dictated by:

FMS (I, C) =
∫

Ω

|I0 − I|2dx + λ

∫
Ω\C

|∇I|2dx

+ μ · length (C) (1)

The first term represents an image data-driven energy,

which attracts the solution image I close to the observed

image I0. The second term controls the smoothness of the

solution image I , and the last term is the length of the evolv-

ing contour C. λ and μ are two positive parameters for

controlling the weight of the two terms.The segmentation

is done by minimizing the above energy functional and get

the solution image I . However, it is not easy to minimize

the above energy functional directly, since there has an un-

known C, and also because the problems are not convex.

In [2] , Chan and Vese reduced the model into piecewise

constant one, they assume that the solution image I are

composed by two intensity piecewise constant regions, then

the problem becomes a minimal partition problem.In this

case, the second term of the above functional is eliminated.

What’s more, they solved the problem under the framework

of level set[9], in which the contour C is replaced by the

zero level set of a real-valued Lipschitz function φ: such

that C = {x ∈ Ω : φ(x) = 0}. Inside the contour

φ(x) < 0, while outside the contour we have φ(x) > 0



F (φ, C1, C2) = λ1

∫
Ω

|I0 (x) − C1|2H (φ (x)) dx

+ λ2

∫
Ω

|I0 (x) − C2|2 ((1 − H (φ (x))) dx

+ μ

∫
Ω

δ (φ (x)) | � φ (x) |dx (2)

where λ1, λ2, μ are fixed parameters. H(φ(x)) is the

Heaviside function, and δ(φ(x)) is Dirac function. C1 and

C2 can be obtained through the first variation of equation

(2) with respect to the constants C1 and C2.

C1 (φ) =

∫
Ω

I0 (x)H (φ (x)) dx∫
Ω

H (φ (x)) dx
(3)

C2 (φ) =

∫
Ω

I0 (x) (1 − H (φ (x)))dx∫
Ω

(1 − H (φ (x)))dx
(4)

Please note that C1 and C2 are the global mean intensity

of the region outside and inside the zero level set respec-

tively. So the solution image can be expressed as

I = C1H (φ) + C2 (1 − H (φ)) (5)

The main drawback of this segmentation model is the

potential existence of local minima in the energy functional.

For example, proper segmentation often fails when regions

are inhomogeneous or when regions are homogeneous but

very noisy.

We argue from real world experiences that, more reli-

able and robust results can be achieved if image informa-

tion from both the point itself and its neighboring points are

properly included. It is clear that neighboring image infor-

mation provides useful constraints and gives better regional

understanding of the local boundaries.

2.2. Neighbor-Constrained Active Contours With-
out Edges

Originated from the piecewise constant Mumford-Shah

model, the energy of an arbitrary point x in the image can

be expressed as:

E(x)
= |I0 (x) − C1|2H (φ (x))
+ |I0 (x) − C2|2 ((1 − H (φ (x))) (6)

From the above energy we can see: if the point x is inside

the evolving contour,its energy is the second term of the

above functional, or its energy is the first term. However, all

Figure 3. Comparison between our method (left) and traditional

region-based method (right) on meeting images with intensity

inhomogeneity–Our method converges properly using the neigh-

borhood constraints, and the traditional one is affected by the in-

tensity inhomogeneity.

the points inside the contour do not have the same intensity,

neither do the points outside the contour. As a result, it is

not accurate to just use two constant C1 and C2 to calculate

the energy inside and outside the contour respectively. To

improve the accuracy, we use the local mean intensity I1 (x)
and I2 (x) instead.

Modifying the above original formulation by integrat-

ing over the influence domain Ωe (x)(more details later) for

each data point to incorporate the neighborhood influence,

the following energy is achieved:

E(x)

=
∫

Ωe(x)

|I0 (y) − I1 (x) |2H (φ (y)) dy

+
∫

Ωe(x)

|I0 (y) − I2 (x) |2 (1 − H (φ (y))) dy (7)

Here I1 (x) is the mean intensity of all the points in the



intersection of inside the contour and the influence domain,

and I2 (x) is the mean intensity of all the points in the in-

tersection of outside the contour and the influence domain.

SoI1 (x) and I2 (x) can be given by:

⎧⎨
⎩

I1 (x) = average(I0) in Ωe (x)
⋂

Ωinside

I2 (x) = average(I0) in Ωe (x)
⋂

Ωoutside

(8)

I0 (y) is the intensity of the point y within the influence

domain of point x. Integrating over the whole image do-

main, we can reach the following energy functional:

E (I1, I2, φ)

= λ1

∫
Ω

∫
Ωe(x)

|I0 (y) − I1 (x) |2H (φ (y)) dydx

+ λ2

∫
Ω

∫
Ωe(x)

|I0 (y) − I2 (x) |2

(1 − H (φ (y))) dydx (9)

Here, λ1 and λ2 are two fixed positive parameters, to weight

the energy inside and outside the contour respectively. In

order to control the smoothness of the evolving contour, a

full case of the above model is obtained by adding a term of

the curve length:

E (I1, I2, φ (x))

= λ1

∫
Ω

∫
Ω

χΩe(x) (y) |I0 (y) − I1 (x) |2H (φ (y)) dydx

+ λ2

∫
Ω

∫
Ω

χΩe(x) (y) |I0 (y) − I2 (x) |2

(1 − H (φ (y))) dydx

+ μ

∫
Ω

δ (φ (x)) | � φ (x) |dx (10)

where μ > 0 is a fixed parameter. χΩe(x) (y) is the charac-

teristic function of Ωe (x), it equals to 1 when y ∈ Ωe (x),
and equals to 0 otherwise. As a result we can get the solu-

tion image, I = I1H (φ) + I2(1 − H (φ)). If we minimize

the above energy, it forces I1 (x) and I2 (x) to get closer to

the intensity of all the points within its influence domain,

which makes I1 (x) and I2 (x) be the mean intensity within

the local domain.In Fig. 1, we can see two different solu-

tion images got from our model and the piecewise constant

model.The left column is the observed image after initial-

ization, and the right column are the solution images. The

top row stands for the piecewise constant Mumford-Shah

model, and the bottom row stands for our model. As we can

see, the solution image on the bottom row is much closer

to the observed image than the one on the top row. So

we can get much better result than the piecewise constant

Figure 4. A segmentation result for an inhomogeneous image us-

ing our proposed method. The evolution process is listed with four

figures from left to right, top to bottom. The parameters chosen for

this example are: λ1 = 1,λ2 = 1,μ = 0.003 × 2552.

Mumford-Shah model. In all, the function of the local in-

tegration are twofold: first, it makes the solution image be

close to the original image; second, it smoothes the solution

image.

2.3. Numerical Implementations

Now, let us take the first variation of the right hand side

of Equation (10) with respect to I1 and I2:

I1 (x) =

∫
Ω

χΩe(x) (y) H (φ (y)) I0 (φ (y)) dy∫
Ω

χΩe(x) (y) H (φ (y)) d y
(11)

I2 (x) =

∫
Ω

χΩe(x) (y) (1 − H (φ (y))) I0 (φ (y)) dy∫
Ω

χΩe(x) (y) (1 − H (φ (y))) dy
(12)

Note that I1 (x) and I2 (x) are the local mean intensity

within the influence domain of the pixel x.

Finally, the following Euler-Lagrange Equation can be

achieved by minimizing the whole energy with respect to

φ:

∂φ

∂t
= δε (φ) [−λ1

∫
Ω

χΩe(y) (x) |I0 (x) − I1 (y) |2dy

+ λ2

∫
Ω

χΩe(y) (x) |I0 (x) − I2 (y) |2dy

+ μ div

( �φ

| � φ|
)

] (13)

In this paper, we set ε to be 1 and use the Heaviside function

and Dirac function as in[2].

Hε (x) =
1
2

(
1 +

2
π

arctan
(x

ε

))
(14)



Figure 5. Comparison between traditional our algorithm (left) and

region-based method (right) on noisy synthetic images.

Table 1. Comparison the accuracy of the proposed method with the

piecewise constant Mumford-Shah model, where mg is the ratio of

number of pixels shared with the ground truth to the total pixels of

the ground truth and me is the ratio of the number of the mismatch

pixels to the total pixels in the segmentation.

Method S/N(dB) mg me

14.8 0.9939 0.0051

Our method 10.2 0.9903 0.0142

8.2 0.9856 0.0169

5.8 0.9746 0.0243

4.2 0.9698 0.0287

14.8 0.9969 0.0127

MS 10.2 0.9901 0.0285

8.2 0.9823 0.0525

5.8 0.9703 0.1274

4.2 0.9580 0.1959

δε (x) =
1
π

(
ε

ε2 + x2

)
(15)

To discretize the Equation (13), we use a finite differ-

Figure 6. Segmentation of two ultrasound images using our

method. The evolution process is listed with four figures from

left to right. The parameters chosen for this example are: λ1 = 1,

λ2 = 2.4,μ = 0.01 × 2552(top); λ1 = 1, λ2 = 1.5, μ =
0.08 × 2552(bottom).

ences implicit scheme:

φn+1 − φn

�t

= δε (φn) [μΔ−
x

(�+
x φn

|∇φn|
)

+ μ�−
y

(�+
y φn

|∇φn|
)

− λ1

∫
Ω

χΩe(y) (x) |I0 (x) − I1 (y) |2dy

+ λ2

∫
Ω

χΩe(y) (x) |I0 (x) − I2 (y) |2dy] (16)

where �−
x φi,j = φi,j − φi−1,j ,�+

x φi,j = φi+1,j − φi,j

�−
y φi,j = φi,j − φi,j−1, �+

y φi,j = φi,j+1 − φi,j

|∇φn| =
√(�+

x φn
)2

+
(�+

y φn
)2

2.4. Discussion

In practice, influence domains of different sizes generate

different energy term, which in turn are suitable for differ-

ent situations. For example, large influence domains are

effective in robust segmentation of noisy images. On the

other hand, small influence domains are needed for object

boundaries with fine details. The segmentation results of

a synthetic image with different influence domain size are

shown in Fig.2 The left image is the result using small in-

fluence domain, the image is segmented into two different

objects, more fine details are preserved. The right one is the

result using large influence domain, the image is smoothed

heavily, and only one object is detected. In this paper,the

shape of the influence domain is a circle. However, using

adaptive influence domain according to both the image data

and the level set geometry may get a better result. Schemes

to adaptively determine the sizes of the influence domains

are undergoing.

3. Experiments and Results
We have conducted several experiments on synthetic and

real images with our proposed method, and compared the



Figure 7. Application to white matter segmentation for MR im-

ages: the results of our method (left) and the segmentation result

of the piecewise constant model (right). The evolution process is

listed with four figures from top to bottom.

segmentation results with those from the traditional piece-

wise constant Mumford-Shah model.

In Fig.3, comparison is made between piecewise con-

stant Mumford-Shah model and our algorithm on dealing

with the inhomogeneous images. The first four columns

are the progress of the evolution, and the last column is the

solution image. As can be seen, our approach produces bet-

ter segmentation results than the edgeless active contours

scheme. Fig. 4 gives an another example to segment images

with intensity inhomogeneity when using proposed method

in this paper. Implicit to traditional method is the assump-

tion that each region, e.g., object and background, can be

described by the mean gray level value. However, for the

inhomogeneous images, such assumption is not true. Our

proposed framework converges to the boundary since it has

a better regional understanding of the information within its

local neighborhood.

Next, we have performed comparative tests to examine

our proposed method’s tolerance to additive noises. Despite

the fact that the images are noticebly worse, our method is

still able to pick out the object boundary, as shown in Fig. 5.

We treat the segmentation results of the clean image as the

ground truth, then we define two values to measure the ac-

curacy of the segmentation. The first one is the ratio of num-

ber of pixels shared with the ground truth to the total pixels

of the ground truth, denoting this value as mg . The sec-

ond one is the ratio of the number of the mismatch pixels to

the total pixels in the segmentation, denoting it as me. The

segmentation criteria is based on the notion that the larger

mg and smaller me, the better the segmentation results. As

can be seen from Table. 1, the segmentation result obtained

using our method is more accurate in comparison to that

obtained by traditional edgeless active contours. The noise

in image makes it difficult for piecewise constant Mumford-

Shah model to achieve the real object boundary by using the

global mean gray level value. Our method gives local un-

derstanding of the image and thus makes it more tolerable

to noise.

In Fig. 6, we segment ultrasound images using our pro-

posed method. As we see, neighbor-constrained edgeless

active contour is less affected by local features. We have

also tested the algorithms on brain images, as shown in

Fig. 7. Application of the Chan-Vese algorithm resulted

in a good segmentation, however with a large degree of

noise(Fig. 7(right)). Clearly, our result yields a smooth

boundary which captures the details more accurately. Fi-

nally, Fig. 8 shows the ability of our method to deal with

nature image. The difficulty for segmenting this image is

that part of head is more similar to the background. Once

again, in this case, our proposed framework gives satisfac-

tory segmentation results.

4. Conclusions

A novel region-based geometrical formulation for ac-

tive contours, which combines local Mumford-Shah energy

functional and the level set representation, is presented. We

establish the Mumford-Shah energy functional on each im-

age point with its local neighborhood in a way such that

it is capable of providing sufficient information to define a

desired segmentation which is robust against intensity in-

homogeneity and noise impact. Experiments for different

kinds of images are presented.
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