
Linear Discriminant Function:
the linear discriminant function:
g(x) = wtx+ ω0

x is the point, w is the weight vector, and ω0 is the bias (t is the transpose).
Two Category Case:
In the two category case, we have two classi�ers (salmon and sea bass). We

decide whether it belongs to each classi�er by taking the discriminant function,
and assigning points to ω1 or ω2, based upon whether g(x) > 0 or g(x) < 0.
What this actually boils down to is whether wtx is greater or less than ω0, or
whether the value of the point multiplied by the transpose of the weight vecter
is greater or less than the bias. The area where g(x) = 0 is the decision surface,
creating two regions (R1 and R2).

If a point that is located on the decision surface H(where wtx = ω0), the
point is treated as ambiguous, and not necassarily belonging to either set. If
two points are on the decision surface then they both have an equal output
(wtx1 + ω0 = wtx0 + ω0 or, wt(x1 − x2) = 0). g(x) also acts as a measure
of the distance from the decision surface. X can be expressed as the following
function:

x = xp + r(w/||w||)

Where xp is the projection of x onto the hyperplane H, and r is the distance
desired (positive for membership in R1, negative for membership in R2).

Because xp is projected on H, g(xp) = 0. As a result, g(x) = r||w||, in other
words:

r = g(x)/||w||

A vector from the origin to H, V could be expressed using:

V = ω0/||w||

As you can see, w sets the direction of H with respect to the origin, and ω0

sets the distance of H from the origin.
Multicategory Case:
one idea is to split each region Ri into membership in a set. For example,

Ri is split it into salmon, trout, and sea bass, with regions for not trout, trout,
salmon, not salmon, sea bass, and not seabass, along with an ambigous region.

a classi�er Hi separating Ri into ωi and !ωi

Another approach is to have split them by pairs, so that when trout borders
salmon, we split the region into trout and sea bass, but still have the ambiguous
region where all of the boundaries meet.

In this approach, we will have c(c − 1)/2 classi�ers, one for each pair of
subspaces so we get

Hij =the linear discriminant between ωiand ωj

1

however both approaches do leave ambiguous regions, so we use the linear
machine: in this case we use a discriminant function for each classi�er, each
independent of the other, and each with its own region. This is di�erent from
the �rst approach because now, every point in the region is given membership
within a set, there are no more regions of the form !ωi, which removes that large
ambiguous region, but still leaves ambiguity when points are located directly
on the decision boundaries. It is di�erent from the second approach because
instead of having c(c − 1)/2 discriminants, we now have c discriminants, each
of which can possibly be more complex.

In this version a point is evaluated for each classi�er one by one. gi(x) =
wt

ix + ωi0 i = 1,, c, ωi = x if gi(x) > gj(x)for all j 6= i the discriminant Hij

shows up between two subspaces when gi(x) = gj(x) so 0 = gi(x)− gj(x); using
the formula for the space gi(x), gi(x) = wt

ix + ωi0, we get 0 = (wi − wj)tx +
(ωi0 − ωj0), Hij is normal to wi − wj and the distance and direction of x from
Hij is (gi(x)− gj(x))/||wi − wj || so:

Hij = ((wi − wj)tx+ (ωi0 − ωj0))/||wi − wj ||

because of the normalization, it is the di�erence between weight vectors, and
not the magnitude of any one vector, that becomes important in determining
the location of the discriminant.

The decision regions are convex, as was seen in the images, and that leaves it
with some de�nitive restrictions, however. The main restriction is that densities
need to have a single area with maximum density (unimodal), instead of having
multiple points with high density (multimodal).

Linear Discriminant Function

We can generalize the linear discriminant function as:
g(x) = w0 +

∑d
i=1 wixi

Where [wi] is the weight vector, and d is the dimensionality of x and w.
The sum is what we're used to seeing as wTx, and w0 is the bias term.
The surface de�ned by g(x) = 0 is a hyperplane.
Quadratic Discriminant Function

We can add a squared term to get the quadratic discriminant function:
g(x) = w0 +

∑d
i=1 wixi +

∑d
i=1

∑d
j=1 wijxixj

Note that we now have a W matrix, [wij], in the third term.
Because xixj = xjxi, we let wij = wji, so our matrix is symmetric.
The surface de�ned by g(x) = 0 is hyperquadric.
Separating Surface

More about the separating surface:
Scale the matrix to get a new matrix:

W̄ = W
wTWw−4w0

If W̄ = nI for n > 0, then the separating surface is a hypersphere.
If W̄ is positive de�nite, then the separating surface is a hyperellipsoid.
If W̄ has both positive and negative eigenvalues, then the separating surface

is a hyperhyperboloid.

2

Polynomial Discriminant Function

We can continue to add more terms to the discriminant function to get a
polynomial of the nth degree.

For example, the third term would look like:
∑d

i=1

∑d
j=1

∑d
k=1 wijkxixjxk

This gets unwieldy fairly quickly, so let's de�ne a vector y that consists of d̂
functions of x, an a general weight vector a. Then we have:

g(x) =
∑d̂

i=1 aiyi(x)
g(x) = aTy

Transformation

What happened? We performed a transformation from the d-dimensional x-
space to d̂-dimensional y-space. By picking the yi(x) functions intelligently, we
can thus transform any feature space with painfully complex separating surfaces
into a y-space where the separating surface is a hyperplane that passes through
the origin.

Problems

Take the quadratic example. We have d(d+1)
2 terms inW, d terms in w, and

1 term in the bias, w0. Adding all these together gives us (d+1)(d+2)
2 terms in d̂.

If we generalize to the kth power, we have O(dk) terms. Worse, all of the terms
in a need to be learned from training samples. This is simply too much to deal
with.

Linear Discriminant Function

That's not to say this approach is useless. Recall the original linear discrim-
inant function:

g(x) = w0 +
∑d

i=1 wixi

Let y = [
1
x

] and a = [
w0

w
].

We've de�ned a very simple mapping from d-dimensional x-space to d + 1-
dimensional y-space. But now our decision hyperplane, Ĥ, which could be
anywhere in the feature space, passes through the origin. And, in line with
section 5.2, the distance from y to Ĥ = |aTy|/||a|| = g(x)/||a||. So we no
longer need to �nd both w0 and w, but rather a single weight vector a.

Two-Category Linear Separable Case

Suppose we have n samples −→y1,−→y2, . . . ,−→yn, where each sample is either labeled
ω1or ω2. Our goal is to use these samples to �nd weights in a linear discriminant
function.

Let the weights be represented by the vector −→a .
Let the discriminant function be g(−→x) =

−→
at · −→y .

Ideally, we want a single weight vector to classify correctly all the samples.
If we can obtain the ideal and �nd one such vector then the samples are linearly
separable.

Given a sample −→yi , we know it is classi�ed correctly

if
−→
at · −→yi > 0 and −→yi is labeled ω1

or
if
−→
at · −→yi < 0 and −→yi is labeled ω2

3

To �normalize� something, is to make everything �normal�. That is, every-
thing in question will be the same or similar in some regard. Here we will
normalize the samples by taking the negatives of the ones that have a negative

sign. This makes the expression
−→
at · −→yi > 0 for all i. Why do this? Having done

this we can now ignore the labels and focus more on �nding −→a . None of the
essential information has been lost by this transformation. The space prior to
the transformation is called the Feature Space and the one after is now called
the Weight Space.

Separating Vector a.k.a. Solution Vector

If there exists a vector −→a such that for all the normalized −→yi−→
at · −→yi > 0
then −→a is the separating vector.
The vector −→a can be looked as a speci�ed point in weight space. All −→yi

place constraints on where that point may be.

For all i,
−→
at · −→yi = 0 de�nes a hyperplane through the origin of the Weight

Space. By the de�nition of normal then, each −→yi is normal to its corresponding
hyperplane.

Now, for all −→yi and each corresponding hyperplane, if −→a exists then it is
on the positive side of every hyperplane. Thus we know, if a solution exists, it
must lie in the intersection of the n-half spaces. The region in which it can exist
is called the Solution Region.

Simplifying �nding −→a
Note, the solution vector −→a is not unique.
Here are two ways to constrain the solution space some when �nding the

solution vector −→a .

1. Find a unit-length weight vector that maximizes the minimum distance
from the samples to the separating plane.

2. Given some positive real number b, �nd the minimum length weight vector

satisfying
−→
at · −→x > b. b is called the margin. This new region will lie

completly inside the old solution region. It is b
‖yi‖ from the old region.

.
Our motivation for these two methods is to �nd a solution vector −→a more

towards the middle of the solution region. Our main concern is that we want
to prevent an iterative process trying to �nd −→a from coming up with a solution
on the boundary. We want a solution vector closer to the middle based on the
idea that it is more likely new data will be classi�ed correctly.

Methods for �nding −→a
We now have a set of linear inequality equations

−→
at · −→yi > 0 where we want

to �nd a solution vector −→a that solves them. We will de�ne a criterion function
J(−→a) that is minimized if −→a is a solution vector. This criterion function will
be the means by which we �nd the solution vector.

The mathematical process we will use to minimize the criterion function
J(−→a) to �nd the solution vector −→a is called gradient descent.

4

How it works.
Take an arbitrary weight vector

−−→
a(1). Then take the gradient vector of that

arbitrary initial weight vector, ∇J(
−−→
a(1)).

Then move some small distance in the direction of greatest descent away

from
−−→
a(1) and this will be

−−→
a(2). The greatest descent is the negative of the

gradient by de�nition.

For the (k+1) step,
−−−−−→
a(k + 1) is found by:

−−−−−→
a(k + 1) =

−−→
a(k)− η(k)∇J(

−−→
a(k))

η is a positve real number that is the scaling factor or learning rate. It is
used to set up the step size. That is how far down the steepest descent from−−→
a(k) to

−−−−−→
a(k + 1) we will go.

Setting the Learning Rate η
The biggest problem we face using this method for the purpose of �nding

the soluton vector is that if poorly selected our learning rate can move too slow
or it can over shoot and then even possibly diverge.

To address this concern with the learning rate we will give a method of
setting the learning rate.

Start with the assumption that the criterion function J(
−→
a) can be approx-

imated well by the second order Taylor series expansion around the value of−−→
a(k).

J(
−→
a) ' J(

−−→
a(k)) +∇J t(−→a −−−→a(k)) +

1
2

(−→a −−−→a(k))tH(−→a −−−→a(k))

H is the Hessian matrix of second partial deriviatives about
−−→
a(k).

Our next step in the derivation for �nding a way to compute η e�ciently is

to substitute
−−−−−→
a(k + 1) into the above equation. This gives

J(
−−−−−→
a(k + 1)) ' J(

−−→
a(k))− η(k)‖∇J‖2 +

1
2
η2(k)∇J tH∇J

...
Optimal Learning Rate

It follows that J(
−−−−−→
a(k + 1)) is minimized when

η(k) =
‖∇J‖2

∇J tH∇J

This is the formula for the optimized learning rate η.
Newton's Algorithm

Another method that could be used besides the gradient descent is Newton's

algorithm. In this we do not solve for
−−−−−→
a(k + 1) by taking a small step down

the negative gradient with a learning rate, but instead with the inverse Hessian,
and thus the Hessian must be nonsingular. It should be noted though that
the inversion is of time O(d3). A time which can add up quickly and make

5

gradient descent more applicable. Newton's algorithm works well on quadratic

error functions because you are minimizing
−−−−−→
a(k + 1) a second order expansion

by inserting the following in replace of line 3 in Algorithm 1.

−−−−−→
a(k + 1) =

−−→
a(k)−H−1∇J

(Insert Algorithm 2 here)

6

