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Syntactic Pattern Recognition of the ECG 
PANAGIOTIS TRAHANIAS AND EMMANUEL SKORDALAKIS 

Abstract-An application of the syntactic method to recognition of 
electrocardiogram (ECG) and to the measurement of ECG parameters 
is presented. Solutions to the subproblems of primitive pattern selec- 
tion, primitive pattern extraction, linguistic representation, and pat- 
tern grammar formulation are given. Attribute grammars are used as 
the model for the pattern grammar because of their descriptive power, 
which is due to their ability to handle syntactic as well as semantic 
information. This approach has been implemented and the perfor- 
mance of the resultant system has been evaluated using an annotated 
standard ECG library. 
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Fig. 1, A cardiac cycle and its constituent patterns. 
I. INTRODUCTION 

HE electrocardiogram (ECG) is routinely used in T clinical practice. Due to the large number of ECG's 
analyzed each year, it is worthwhile to automate the pro- 
cess to the maximum extent possible. Work toward this 
end started late in the 1950's [ l ] ,  [ 2 ] .  

Computerized ECG processing systems, like manual 
ECG processing systems, perform two distinct tasks. The 
first is concerned with pattern recognition and parameter 
measurement. The second is an interpretation task, which 
utilizes the results of the first task. In typical systems the 
pattern recognition and parameter measurement task is the 
hardest. Attempts to automate this task have been made 
using nonsyntactic methods [2], syntactic methods 131- 
[6], and hybrid methods [7]-[ 101. 

Although the syntactic method seems suitable to the 
problem of ECG pattern recognition and parameter mea- 
surement, not much progress has been made to date [ l l ] .  
In the attempts reported, only specific aspects of this 
problem have been tackled. A context-free grammar, for 
peak recognition in ECG's, is described in [3]. Linear [4] 
and attribute [6] grammars have been proposed for the 
detection of the QRS complexes. Context-free [5] gram- 
mars have been used for the detection of certain ventric- 
ular arrhythmias. An attempt to perform arrhythmia anal- 
ysis using the model of finite-state automata is described 
in [12]. Filtering of ECG waveforms by the syntactic 
method has also been studied [13]. 
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This paper presents work done in applying the syntactic 
method to the whole problem of ECG pattern recognition 
and parameter meaSurement. Solutions to the subprob- 
lems of primitive pattern selection, primitive pattern ex- 
traction, linguistic representation, and formulation of a 
pattern grammar are described. 

The paper is organized as follows. The patterns that are 
to be recognized and the parameters that are to be mea- 
sured are described in Section 11. Our syntactic approach 
to the problem of ECG pattern recognition and parameter 
measurement is described in Section 111. The implemen- 
tation of this approach is described in Section IV. Exper- 
imental results are given in Section V. The paper con- 
cludes with a brief discussion in Section VI. 

11. PATTERNS AND PATTERN PARAMETERS IN ECG's 
The ECG is a biosignal which is due to the electrical 

activity of the human heart that is transmitted to the body 
surface. One can record this signal using various systems. 
Currently, two such systems are principally used. The first 
is the 12-lead system that records 12 subcomponent sig- 
nals which are called lead I, 11, 111, AVR, AVL, AVF, 
V1, V2, V3, V4, V5, and V6, respectively. From these 
leads, the first six are recorded with electrodes at the 
limbs, while the other six with electrodes at the chest. The 
second is the orthogonal 3-lead system that records three 
subcomponent signals which are called lead X, Y ,  and 2, 
respectively. Each ECG lead is composed of a number of 
cardiac cycles. A typical cardiac cycle is shown in Fig. 
1. 

The electrocardiographic patterns that constitute a car- 
diac cycle and must be recognized are the complexes, the 
interwave segments, and the cardiac intervals (Fig. 1). 
The complexes are three: the P complex, the QRS com- 
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plex, and the T complex. The parameters of these patterns 
that must be measured are 1) height and duration for the 
complexes and some of their component waves and 2) du- 
ration for the interwave segments and the cardiac inter- 
vals. Thus, there are two types of measurements to be 
performed: time measurements and amplitude measure- 
ments. Moreover, the QRS complexes have to be classi- 
fied. In most cases they belong to one class but there are 
cases where they belong to more than one class. 

111. THE SYNTACTIC APPROACH IN ECG RECOGNITION 
A .  Primitive Pattern Selection 

Line segments have mainly been proposed in the past 
as primitive patterns [ 5 ] ,  [6] ,  [l 13. Triangles have also 
been proposed [8], [lo]. The first are low level while the 
second are difficult to extract. 

We have chosen the peak, the straight line segment, 
and the parabolic segment as primitive patterns [ 151. This 
choice seems to be a natural one because the complexes 
are composed of peaks and the segments have the shape 
of a straight line or a parabola. 

The peak pattern is shown in Fig. 2. This pattern is that 
part of a signal which is demarcated by three character- 
istic points. The first point is called left peak boundary, 
the second peak extremum, and the third right peak 
boundary. The sample points between the left peak 
boundary and the peak extremum form the left arm of the 
peak. The sample points between the peak extremum and 
the right peak boundary form the right arm of the peak. 
In what follows peaks will be symbolized as P I ,  P2 ,  
. . .  , where Pi is the name of peak i .  Each lead of an 

> Y n ,  
where yi is the amplitude in microvolts ( pV) of the sam- 
ple point i .  

A set of attributes is assigned to each primitive pattern. 
The values of these attributes are calculated during the 
primitive extraction phase and they are utilized during the 
recognition process. They contribute both to the recog- 
nition of the patterns and to the measurement of their pa- 
rameters. That is, they are used in a quantitative way for 
qualitative and quantitative purposes. 

A set of seven attributes is assigned to each peak Pk.  
This set is symbolized as { X i k ,  y /k ,  xmk, Y m k ,  X , k ,  Y r k ,  ek } ,  
where: 

ECG in digital form is represented as y I ,  y 2 ,  - 

( X / k ,  y / k )  is the left boundary of the peak Pk. 
( X , , , ~ ,  Y m k )  is the peak extremum of the peak Pk. 
(xrk ,  yrk) is the right boundary of the peak Pk.  
e k  is the energy of the peak Pk defined as: 

0 

A set of four attributes is assigned to each straight line 
or parabolic segment S. This set is symbolized as { x I S ,  
Y E ,  X r S ,  Y r S } ?  where: 

xlS ,  y l s )  is the start point of the segment S. 
( x r S ,  y r s>  is the end point of the segment S .  

p e a k  e x t r e m u m  
P 

l e f t  b o u n d a r y  r i g h t  b o u n d a r y  

Fig. 2 .  Illustration of the peak pattem. 

B. Primitive Pattern Extraction 
The method developed for the extraction of the primi- 

tive patterns is discussed in detail in [ 141 and [ 151. This 
method focuses on the extraction of peaks. The noisy 
peaks are recognized directly using a set of criteria em- 
pirically established. The real peaks are recognized by 
subtracting the noisy peaks from the set of all peaks. The 
boundaries of the recognized real peaks are subsequently 
computed. The algorithm developed for the calculation of 
the peak boundaries is based on the a priori assumption 
that the curvature is, locally, a maximum at these points. 
Computationally, the following four steps are executed: 
1) a search interval is established, 2) the data points within 
this interval are approximated by a cubic spline function, 
3) the curvature k, is calculated at each point t of the search 
interval by the formula k,  = 1 y,” 1 /( 1 + ( y:  ) 2 ) 3 / 2 ,  and 
4) the point within the search interval in which the cur- 
vature takes its maximum value is taken as the boundary 
point. 

The extraction of the segments is based on the precom- 
puted peak boundaries which are also boundaries of the 
segments in the following sense: when the right boundary 
of the peak Pi is very close to the left boundary of the 
peak Pi + then no segment exists between the peaks Pi 
and Pi + otherwise a segment exists which has as left 
boundary the right boundary of the peak Pi and as right 
boundary the left boundary of the peak Pi + By a least- 
squares fit it can be subsequently decided whether this 
segment is linear or parabolic. 

C. Linguistic Representation 
The alphabet of symbols C = { K’, K - ,  E ,  II} has 

been adopted for encoding the ECG waveforms, where 
K +  denotes positive peak, K -  negative peak, E straight 
line segment, and II parabolic segment. Thus, an ECG 
waveform is linguistically represented as a string of sym- 
bols from the alphabet C. Each symbol is associated with 
the values of the corresponding attributes. 

D. Pattern Grammar 
In syntactic pattern recognition, the task of recognition 

is essentially reduced to that of parsing a linguistic rep- 
resentation of the patterns to be recognized with a parser 
that utilizes a certain grammar, called “pattern grammar” 
[16]. The pattern grammar describes the patterns to be 
recognized in a formal way, and the formulation of the 
pattern grammar is always the crucial subproblem in any 
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pattern recognition application that is to be tackled by the 
syntactic approach. 

In the case of ECG’s, where we have a large number 
of different morphologies of the patterns, where added 
morphologies can be found due to noise, and where mea- 
surements of the various parameters have to be per- 
formed, powerful grammars capable of describing syntax 
as well as semantics are needed as a model for the for- 
mulation of a pattern grammar. Due to their power in de- 
scribing structural and statistical features [ 171, attribute 
grammars are selected and used in this paper as the model 
for the formulation of a pattern grammar for ECG’s. Other 
reasons for this selection, which are common to any syn- 
tactic approach to pattern recognition, are the following: 
1) an increase of parsing speed is obtained as the injection 
of attributes into symbols (nonterminals and terminals) re- 
duces the grammatical complexity and 2) the technology 
of processing attribute grammars is fairly mature and 
many implementations of evaluators do exist. A general 
description of attribute grammars can be found in [17 ] .  
Pattern recognition in the framework of attribute gram- 
mars is discussed in [ 171 and [ 181. 

We have formulated a pattern grammar, based on at- 
tribute grammars, for the description of ECG waveforms, 
using a priori knowledge of the ECG structure. This pat- 
tern grammar is given in the Appendix. It recognizes the 
electrocardiographic patterns and measures their parame- 
ters as required in the pattern recognition and parameter 
measurement phase of an ECG processing system. It also 
performs classification of the QRS complexes. Evaluation 
of this grammar can be performed by any nondetermin- 
istic attribute grammar evaluator that finds the first solu- 
tion only. 

This pattern grammar was formulated in such a way 
that it can be used to parse error-free input strings as well 
as erroneous input strings. The grammar is able to cope 
with errors due to noisy peaks at the interwave segments 
which have been recognized as real ones during the prim- 
itive extraction phase. The syntactic rules are written in 
such a way that the alternatives for an error-free input 
string are applied first. If this does not lead to a solution, 
then the alternatives that assume the presence of erro- 
neous (noisy) peaks are applied. 

The attribute grammar notation used includes a global 
metavariable called “SUCCESS” that takes only the val- 
ues “true” or “false”. When SUCCESS takes the value 
“false” during the syntactic evaluation of a BNF rule, 
the parser considers that the matching of the input sub- 
string with this rule fails. Thus, SUCCESS directs the 
parsing (recognition) through the semantics. 

The attributes of the terminal symbols (primitive pat- 
terns) are also used as synthesized attributes for the non- 
terminal symbols. In addition to that, eleven more attri- 
butes are used for the nonterminal symbols of the 
grammar, namely: 

iw 
sw 

Number of cardiac waves, inherited. 
Number of cardiac waves, synthesized. 

ic 

iqrs ( i ) 
sqrs ( i ) 
ldur 

rdur 

lh 
rh 

sc 

tp-flag 

Number of QRS classes, inherited. 
Number of QRS classes, synthesized. 
Number of QRS’s in class i, inherited. 
Number of QRS’s in class i ,  synthesized. 
Duration of the left arm of a peak, synthe- 

Duration of the right arm of a peak, synthe- 

Height of the left arm of a peak, synthesized. 
Height of the right arm of a peak, synthe- 

sized. 
Candidacy of a peak as a P or T (sub)pattern, 

synthesized. A positive value denotes that 
the peak is a valid candidate, zero means 
the peak is not accepted as a candidate, -2 
means P complex and - 1, T complex. 

sized. 

sized. 

The inherited attributes of a symbol represent those as- 
pects that derive from the context and are computed in a 
top-down fashion, whereas the synthesized attributes of a 
symbol represent those aspects that are built up from the 
subtree that produces the symbol and are computed in a 
bottom-up fashion. 

The semantic rules that correspond to each syntactic rule 
are given below each one. To keep the pattern grammar 
size as small as possible in this paper, the semantic rules 
that perform amplitude measurements are omitted as are 
some semantic rules that perform time measurements. 
Thus, for each syntactic rule ( A ) ,  --j X2X3 - * X,, X, E 
( V ,  U V,), where V ,  denotes the set of terminal symbols 
and V, the set of nonterminal symbols, the semantic rules 
xL1 : = xL2 and x r I  : = x,, for the computation of the start 
and end points of the (sub)pattern ( A ) have been omitted. 
Similarly, for each syntactic rule ( X )  -+ x ,  x E V,, the 
corresponding semantic rules, which pass the attributes of 
x to the nonterminal ( X )  have also been omitted. For the 
same reason, a notation is adopted concerning the evalu- 
ation of the attributes iqrs ( i  ) and sqrs ( i  ). Where no in- 
dex is present in these attributes [ symbolically iqrs ( ) and 
sqrs( )], it is assumed that a loop exists with the index 
varying from 1 to K (K being the maximum value of the 
index ) . 

Although it is easy to follow the logic contained in the 
pattern grammar of the Appendix, some of the most im- 
portant tasks it performs are described below in an infor- 
mal way. 

1) QRS Detection and Recognition: A series of n ( 1 
I n I 7 )  consecutive peaks is recognized as a QRS com- 
plex i f  

a) E:= e, > E , ,  where c l  is a threshold value. 
b) The angle between the right arm of peak i and the 

left arm of peak i + 1 ,  i = l ( 1 ) n  - 1, is less than c 2 ,  
where c2 is a threshold value. 

The first criterion, which is similar to the nonlinear 
transformation short-time energy [19] used by other in- 
vestigators, is adopted here due to its suitability in the 
syntactic approach and because it gives good results. The 
sample points taken in the summation are the ones of the 
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corresponding QRS complex, while a constant number of 
sample points is used in the transformation. 

The angle criterion prevents peaks belonging to P or T 
complexes from being merged with QRS complexes. 

The morphology of the QRS is determined by the alter- 
native of the syntactic rule that matches the QRS. 

2)  P ,  T Detection and Recognition: One or two con- 
secutive peaks are recognized as a P or T complex, by 
thresholding their width and amplitude (thresholds e3 and 
E ~ ,  respectively), depending on the syntactic rule being 
evaluated. They are discriminated from other (noisy) 
peaks by comparing their energies. Noisy peaks in a re- 
gion between two QRS complexes are required to have 
less energy than the energy of the P and T complexes in 
that region. The alternative of the syntactic rule that 
matches the P or T pattern specifies its morphology. It is 
noted that P and T complexes occurring before the first 
and after the last QRS complex found are not recognized. 
This helps to make the grammar simpler. 

3) QRS Classij-ication: The classification of the QRS 
complexes is performed by a nearest neighbor classifica- 
tion algorithm. The distance between a given QRS com- 
plex and a given class of QRS complexes is computed as 
the average of the distances between the given QRS com- 
plex and each QRS complex in the given class of QRS 
complexes. Both morphological (structural) and quanti- 
tative (statistical) features are taken into account in the 
distance computation. Normalized duration and norma- 
lized amplitude are the statistical features used. Mor- 
phological features, in the distance computation between 
two complexes, are taken into account by aligning the 
complexes so that they fit best [20]. 

a c q u i s i t i o n  

p r l m l  t i v e  

p a t t e r n  

e x t r a c t i o n  

_.._..._..___.., I 

a n d  a t t r  I b u t e  

g r a m m a r  

e v a l u a t o r  

\..__..._..____.. 

o u t p u t  

F a r m a t t e ?  

Fig. 3 .  Structure of the SERAMS system. 

Floyd’s parser [21]. A Fortran 77 version of it has been 
made available to us. 

V. EXPERIMENTAL RESULTS 
Real ECG’s, from a standard ECG library known as 

CSE (common standards for quantitative electrocardiog- 
raphy) library [22], were used in order to tune SERAMS 
and to test its performance. The CSE library has been spe- 
cially developed to be used as a reference library. For 
tuning SERAMS, a very small set of ECG’s from the CSE 
library was used as a training set. With the help of this 
set, values for the various thresholds were calculated. 

1V. IMPLEMENTATION 

The syntactic method to the problem of ECG pattern 
recognition and parameter measurement, as described 
above, was implemented and the resultant system named 
SERAMS (syntactic ECG recognition and measurement 
system). The structure of SERAMS is shown in Fig. 3.  

The ECG acquisition component of this system is re- 
sponsible for acquiring one ECG at a time in digital form. 
The primitive pattern extraction component of this system 
extracts the primitives of each ECG waveform and en- 
codes them so that each waveform is transformed into a 
string of symbols (linguistic representation), each symbol 
accompanied by a set of attribute values. The attribute 
grammar evaluator component of this system takes as in- 
put 1) the pattern grammar of the Appendix and 2) the 
linguistic representation (together with its attributes) of a 
waveform. It recognizes the electrocardiographic patterns 
of that waveform and measures their parameters. Finally, 
the output formatter component of this system formats the 
results of the recognition and measurement. 

SERAMS is coded in Fortran 77 because the primitive 
pattern extraction component employs mathematical al- 
gorithms that require an algebraic language. The attribute 
grammar evaluator we used is one which is based on the 

A. An Illustrative Example 
A sample ECG waveform from the CSE library was 

analyzed by SERAMS and the results of the various pro- 
cessing steps are presented here for illustrative purposes. 

Step I-ECG Acquisition: This step is performed by 
the ECG acquisition component of SERAMS. In this par- 
ticular case, this component read the ECG waveform from 
the library in digital form. This waveform is shown 
graphically in Fig. 4(a). 

Step 2-Primitive Pattern Extraction: The digitized 
ECG waveform is the input to the primitive pattern ex- 
traction component of SERAMS. This component ex- 
tracts and encodes the primitive patterns and calculates 
their attributes, thus transforming an ECG waveform into 
a string of symbols (linguistic representation). 

The corresponding linguistic representation of the 
waveform is the following string: 

II K - K + r ~  K - EK - K +II K - r ~  K +EK - EK -K + E 
Each symbol in this representation is accompanied by a 
set of attribute values, given in Table I. In this table, the 
symbols are given in the second column while the first 
column is used for numbering the primitives. The attrib- 
ute values, associated with each primitive, are given in 
the next columns. It is noted that the x,, y m ,  and e attri- 
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5050 
84016 

10973 

6312 
83817 

9332 

163549 

15682 

3089 
93087 

- - 

R 

I 

TABLE I 
ENCODED PRIMITIVES AND THEIR ATTRIBUTES FOR THE WAVEFORM OF FIG. 

P R I M I T I V E  
sequenct 

number 

1 
2 
3 
4 
5 

6 
7 
8 
9 

1 0  
11 
12 
1 3  
14 
15  
16 
17 
1 8  

symbol 

n 
K- 
K+ 

n 
K- 
E 
K- 
K+ 

n 
K- 
n 
K+ 
E 

K- 

E 
K- 
K+ 

E 

4(a) 

A T T R I B U T E !  

1 (ms: 
= 

1 
220 
242 
346 
442 
634 

1248 
1288 
1392 
1484 
1678 
1746 
1900 
1936 
2168 
3052 
3094 
3200 - 

1 ( P V )  - - 
3 56 
367 
379 
273 
197 
336 
300 
286 
233 
174 
282 
356 

5 
- 95 
195 

59 
9 8  

-43 

.(ms) 
= 

234 
296 

534 

1280 
1344 

1574 

1836 

2036 

3084 
3148 

' ~ ( P V I  - 
280 

1196 

14 

190 
1117 

-40  

1566 

-450 

15  
946 

220 
242 
346 
442 
634 

1248 
1288 
1392 
1484 
1678 
1746 
1900 
1936 
2168 
3052 
3094 
3200 
3320 - - 

- 

,r(PV) 
= 

367 
379 
213 
197 
336 
300 
286 
233 
174 
282 
3 56 

5 
-95 
195 
59 
98 

-43 
- 122 - - 

TABLE I1 
RECOGNITION RESULTS FOR THE WAVEFORM OF FIG.  4(a) 

E C G  constituent 11 complex I morphology I x l ( m s )  1 x,(ms) I primitives 

QRS 7,  8 
T -  10 

12 
T -  14 

QRS 

(d) 
Fig. 4. (a) Initial ECG waveform. (b) Extracted primitive patterns. (c) 

Recognized ECG patterns. (d) QRS classification. 

butes do not belong to the set of attributes of the linear 
and parabolic segments. Because of this, the entries in 
Table I that correspond to linear or parabolic segments 
and to any of these attributes are left blank. The linguistic 
representation given above, together with the associated 
values of the corresponding attributes, uniquely defines 
the ECG waveform of Fig. 4(a). 

For visual observation, the extracted primitive patterns 
are shown in Fig. 4(b), where peaks are marked by plus 
( + ) signs and peak boundaries are marked by up arrows 

Step 3-Complex Recognition and QRS Classijica- 
tion: This step is performed by the attribute grammar 
evaluator component of SERAMS, which utilizes the re- 
sults of the previous step and the pattern grammar of the 
Appendix. The recognition results are given in Table 11. 
In this table, the recognized ECG complexes are given 
along with their morphology, time coordinates of their 

( t ) .  

start and end points, and the sequence numbers (Table I) 
of the primitive patterns that constitute them. 

The recognition of the ECG complexes from the prim- 
itive patterns can be inferred by following the rules of the 
pattern grammar. For example, the application of the third 
alternative of the seventh rule (without considering higher- 
level rules) recognizes the first QRS complex after suc- 
cessively applying rules 28 and 25. Similarly, the first T 
complex is recognized by the successive application of 
rule 22 and fourth alternative of rule 24. 

The recognition results are also given in Fig. 4(c) for 
visual observation. The QRS classification results are 
given in Fig. 4(d). In this figure, the class membership of 
each QRS complex is identified by the label above it. 

The computer time required to process that ECG 
waveform on a PRIME 9955 minicomputer system was 
approximately 1 s for the acquisition and primitive ex- 
traction and 1.5 s for the recognition and QRS classifi- 
cation. 

B. Performance Evaluation 
The CSE library was used for the evaluation of SER- 

AMs, as it is a standard library for testing the perfor- 
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mance of ECG measurement programs [22]. The CSE li- 
brary contains 310 ECG’s in digital form together with 
the measurement results for 1) the onsets of P and QRS, 
and 2) the offsets of P ,  QRS, and T. These results were 
determined visually by a group of cardiologists using a 
modified Delfi approach [22] and are considered to rep- 
resent the true values of the corresponding quantities. 

All that has to be done for evaluating the performance 
of an ECG measurement program, with respect to CSE 
reference library, is to process with this program the ECG’s 
of the CSE and compare the measurement results obtained 
by the program for the onsets of P and QRS and the offsets 
of P ,  QRS, and T with the ones provided by the library, 
according to a specified procedure [23]. This comparison 
procedure demands 1) the comparison of the results to be 
done separately for each lead group, 2) the mean of the 
differences (between the measurements of the program and 
the ones provided by the library) per lead group to be as 
close as possible to zero, and 3) the standard deviation of 
the differences per lead group to be less than a tolerance 
limit, the value of which is given [23]. The reason that 
the comparison is performed per lead group is that in the 
CSE library the leads of each group were recorded simul- 
taneously and therefore their cardiac complexes have the 
same onsets and offsets. There are five lead groups: group 
1-111 which contains leads I, 11, and 111, group AVR-AVF 
which contains leads AVR, AVL, and AVF, group V1- 
V3 which contains leads V1, V2, and V3, group V4-V6 
which contains leads V4, V5, and V6, and group X Y Z  
which contains leads X, Y ,  and Z .  

The ECG’s in the CSE library were processed by SER- 
AMS and the above comparison procedure was applied. 
The evaluation results obtained are presented in Table 111. 
As can be observed, the mean of the differences between 
the measurements of SERAMS and the ones provided by 
the CSE library (true measurements) is in most cases close 
to zero and similarly, the standard deviation is in most 
cases less than the value of the corresponding tolerance 
limit. 

-0.2 

VI. DISCUSSION 

The application of the syntactic approach to ECG pat- 
tern recognition and parameter measurement which has 
been described in this paper has given results that are in- 
ferior compared to those reported by some implementa- 
tions using the nonsyntactic approach [24]. However, the 
nonsyntactic approach is fairly mature in this particular 
problem after considerable research work for many years 
[2]. On the contrary, this is the first implementation of 
the syntactic approach and there is much room for im- 
provement of the results by further refinement of the 
method. 

We have observed that the primitive pattern extractor 
does not always accurately delineate the boundaries of the 
peak patterns. This type of error is propagated in the next 
stages and is responsible for many inaccurate results. Re- 
moving this deficiency would considerably improve the 

18.6 

TABLE 111 
EVALUATION RESULTS OF SERAMS WITH RESPECT TO CSE REFERENCE 

arameter - 
P 

onset 

P 
o f f s e t  

QRS 
onset 

QRS 
o f f s e t  

T 
o f f s e t  

1 ead 
group 

1-111 
AVR-AVF 

V I  -v3 
V4-V6 

X Y Z  

Average 

1-111 
AVR-AVF 

V1-V3 
V4 - V6 

X Y 2  

Average 

- 

1-111 
AVR-AVF 

V1-V3 
V4-V6 

XYZ 

Average 

1-11] 
AVR-AVF 

V1-V3 
V4-Vb 

XY 2 

Average 

1-111 
AVR-AVF 

V1-V3 
V4 - V6 

X Y 2  

Average - 

LIBRARY 

standard 

- 3 . 9  15.5 
14.4 

- 0 . 9  12.0 

11.9 

9 . 1  

- 0 . 5  8 . 0  
::; 1 8.7  

0 . 1  19.9 

1.4 18.9 

8 . 0  
9.2 

12.4 
12.6 
8 . 6  

10.2 

12.8 
12.0 
14.4 
13.6 
10.8 

12.7 

7.8 
7 .8  
5 .2  
5 .2  
6 . 6  

6 . 5  

12.4 
13.4 
9.4 

12.0 
10.6 

11.6 

32 .8  
27.6 
28.6 
28.8 
35.2 

30.6 

the mean must be close to  zero 

the standard deviation must be less than the corresponding 
tolerance l i m i t  

Zt 

overall performance of the approach. This is not a trivial 
task, nevertheless it is tractable. Other than this, a very 
small percentage of noisy peaks are not rejected but rec- 
ognized as real ones by the primitive extractor. However, 
this does not affect the system’s performance because, as 
stated earlier, this type of error is corrected by the pattern 
grammar. Errors due to the grammar, i.e., missing or in- 
correct recognition of a complex, were rarely observed. 
The robustness of SERAMS (and of the underlying meth- 
ods) when using low quality data was not tested as the 
data in the CSE library have a noise content within ac- 
ceptable levels. Input data highly contaminated by noise 
could possibly be suitably filtered within the ECG acqui- 
sition part of SERAMS, for improving their quality, be- 
fore passing them to the recognition procedures. 

Other than the accuracy of the results, the syntactic ap- 
proach possesses some very important characteristics, that 
its advocates emphasize and were confirmed in the work 
discussed in this paper. These characteristics are: sim- 
plicity, brevity, clarity, understandability, and modifia- 
bility of the computer program that implements the syn- 
tactic approach. With the exception of the extraction of 
the primitive patterns and the I/O operations, the rest of 
the approach is not coded but specified, the pattern gram- 
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mar being the formal specification. We have here a case 
of (semi)automatic programming. We do not program, we 
specify. The dashed lines in Fig. 3 signify this fact. This 
is the greatest advantage of the syntactic approach. If ways 
can be found to improve the accuracy of the results, then 
it is superior to the nonsyntactic approach. 

Although the syntactic approach is slower than the non- 
syntactic, the speed of processing may be improved by 
developing a special purpose parser for this specific pat- 
tern grammar. Further, the high speed of modem com- 
puter architectures may make this problem less signifi- 
cant. 

APPENDIX 
A PATTERN GRAMMAR FOR THE DESCRIPTION OF ECG WAVEFORMS 

sw1:=sw4 ; scI:=sc4 ; sqrs( )l:=sqrs( )4 ; 
iw3: =O ; ic3: =O ; iqrs( )3: = O  ; 
iw4: =sw3 ; ic4: =sc3 ; iqrs( )4: =sqrs( )3 ; 

2. (INIT-PART) + (SEGMENT) (INIT-PART) 

1. (ECG-LEAD) 1 -+ (1NIT-PART)Z (CARDIAC-CYCLES ) 3  (FJN_PART)4 

- + E  
-+ ( PEAK) (INIT-PART) 

sw1:=sw2 ; scI:=sc2 ; sqrs( )l:=sqrs( )2 ; 
iw2:=iw1 ; ic2:=icl ; iqrs( )2:=iqrs( ) I  ; 

3. (FIN-PART), -+ (QRS)2 (REST_PART)3 

4. (REST-PART) -+ (SEGMENT) (REST-PART) 
-+ (PEAK) (REST-PART) 
- + €  

5 .  (CARDIAC-CYCLES ) 1 -+ ( CARDIAC_CYCLE)2 (CARDIAC-CYCLES ) 3  

if (sw3=0) then swl:=sw2 ; 
else sw,: =sw3 ; endif 
if (sc3=O) then scI:=sc2 ; sqrs( ),:=sqrs( )2 ; 
else scI: =sc3 ; sqrs( )1: =sqrs( )3 ; endif 
iw2: =iwl ; ic2: =icl ; iqrs( )2: =iqrs( ) I  ; 
iw3:=sw2 ; ic3:=sc2 ; iqrs( )3:=sqrs( )2 ; 

swl: = O  ; scl: = O  ; sqrs( ),: = O  ; 
- + €  

6 .  (CARDIAC-CYCLE) 1 -+ (QRS)2 (NON_QRS)3 
swI:=sw3 ; scI:=sc2 ; sqrs( )l:=sqrs( )2 ; 
iw2: =iw, ; ic2: =icl ; iqrs( )2: =iqrs( ) I  ; 
1W3: =sw2 ; 

7. (QRS) -+ [(Q>1 ( R )  ( S )  (R’)  ( S ’ )  ( R ” )  [ ( S ” > l  
qrs-calc ; 

qrs-calc ; 

qrs-calc ; 

qrs-calc ; 

-+ KQ)1 (R)  (S)  (R’) [ (S f ) ]  

-+ HQ>1 ( R )  W>l 

-+ (QS) 

8. (NON-QRS), -+ (SR)2 
if (tp-flag, #0) then SUCCESS: =“false” ; endif 
sw,: =iwl ; 
+ (ST)* (T)3 (TR)4 
if (tp-flag2 # 0 V tp-flag4 # 0) then 

SUCCESS: =“false” ; endif 
if 1 (e2 < e3 A e4 < e3 A dur2 I dur4) then 

SUCCESS: =“false” ; endif 
swI:=sw3 ; iw3:=iw1 ; 
-+ (SP)2 (P)3 (PR)4 
if (tp-flag2 # 0 V tp-flag4 # 0) then 

SUCCESS: =“false” ; endif 
if 1 (e2 < e3 A e4 < e3 A dur2 > dur4) then 

SUCCESS: =“false” ; endif 
sw1:=sw3 ; iw3:=iwI ; 
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9. 

10. 

1 1 .  

12. 

13. 

14. 

15. 

16. 

17. 

18. 

19. 

20. 

+ (ST), (T)3 (ATRIAL_ACTIVITY)4 
if 7 (e2 < e3 A e2 < e4) then 

SUCCESS: =“false” ; endif 
sw,: =sw4 ; iw3: =iwl ; iw4: =sw3 ; 

( ATRIAL-ACTIVITY) 1 + (FLUTTER-WAVES), 
e l :  =e2 ; iw2: =iwl ; sw,: =sw2 ; 

el :=e2 ; iw2:=iwI ; swI:=sw2 ; 

e1:=e2 ; iw2:=iwl ; sw1:=sw2 ; 

el:=e2 ; iw2:=iwl ; swI:=sw2 ; 

+ (NON-COUPLED-P)2 

+ (COUPLED-P)2 

+ ( ATRIAL-FIBRILATION ) 2 

(FLUTTER-WAVES) 1 + (P)2 (FLUTTER_WAVES)3 
e,: =e2+e3 ; iw2: =iw, ; 
iw3: =sw2 ; sw,: =sw3 ; 
- + E  
sw,: =iwl ; e,: =O ; 

if (tp-flag2 # 0 V tp_flag4 # 0 V 
(NON-COUPLED-P)l + (TP)2 (P)3 (PP)4 (P>5 (PR)6 

tp-flag6 # 0) then 
if (e;?<e3 A e;?<e5 A e4<e3  

A e4 < e5 A e6 < e3 A e6 < e5) then 
SUCCESS: =“false” ; endif 

endif 
sw,: =sw5 ; iw3: =iwl ; iw5: =sw3 ; 
e,: =min(e3,e5) ; 

(COUPLED-P), + (TI’):! (P)3 (PR)4 
if (tp-flag2 # 0 V tp-flag4 # 0) then 

SUCCESS: =“false” ; endif 
if1 (e2 < e3 A e4 < e3) then 

endif 
swI:=sw3 ; iw3:=iwl ; e l :=e3  ; 

( ATRIAL-FIBRILATION ) 1 + ( PEAK) 2 ( ATRIAL-FIBRILATION ) 3 
sw,: =iwl ; e,: =e2+e3 ; 

swl:=iwl ; e1:=e3 ; 

sw,: =iw, ; e,: = O  ; 

--* (SEGMENT)* (ATRIAL_FIBRILATION)3 

- + €  

( ST) 1 -+ (INTERWAVE-SEGMENT )2  

e,: =e2 ; tp-flag,: =tp-flag2 ; 

el :  =e2 ; tp-flag,: =tp-flag2 ; 

e,: =e2 ; tp-flag,: =tp_flag2 ; 

e , : = e2 ; tp-flag : = tp-flag2 ; 

el : = e2 ; tp-flagl : = tp-flag2 ; 

e,: =e2 ; tp-flag,: =tp_flag2 ; 

tp-flag, : = tp-flag3 ; 

if (1dur2>e3 A rdur2>c3 A 

tp-flag, : = 1 + tp-flag3 ; 

(TP)  1 + (INTERWAVE_SEGMENT)2 

(PR) 1 --* (INTERWAVE_SEGMENT)2 

(TR) 1 + (INTERWAVE_SEGMENT)2 

(SP) 1 --* (INTERWAVE_SEGMENT)2 

(PP) 1 -+ (INTERWAVE_SEGMENT)2 

(SR) 1 + (SEGMENT)2 (INTERWAVE_SEGMENT)3 

+ (PEAK)2 (INTERWAVE_SEGMENT)3 

1h2 > c4 A rh2 > e4) then 

else tp-flag, : = tp-flag3 ; 
endif 
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21. (INTERWAVE-SEGMENT) 1 --t (SEGMENT)2 (INTERWAVE_SEGMENT)3 
tp-flag, : = tp-flag3 ; e ,  : = e3 ; 

tp-flag,: = O  ; e, :  = O  ; 

if (ldur2 > c3 A rdur? > € 3  A 

- + €  

--t (PEAK)2 (INTERWAVE-SEGMENT), 

lh, > c4 A rh2 > e4) then 
tp-flag , : = 1 + tp-flag3 ; 
e , :  =max(e2,e3) ; 

else tp-flagl: =tp-flag3 ; el :  =e3 ; 
endif 

22. ( T ) ,  -+ (T-OR-P)z 
e , :  =e? ; swI: =sw2 ; 
iw2: =iwI ; tp-flag2: = - 1 ; 

e l :  =e2 ; swl:  =sw2 ; 
iw2: =iwl ; tp-flag2: = -2 ; 

23. ( P ) l  + (T-OR-P)2 

24. (T-OR-P) + K’K- 
tp-calc ; 
-, K-K+ 
tp-calc ; - K+ 
tp-calc ; 
-, K- 
tp-calc ; 

25. ( R )  - K +  
26. (R’)  - K +  
27. ( R ” )  -, Kf 
28. ( Q )  - K- 
29. (QS) - K- 
30. (S)  -+ K- 
31. ( S ’ )  -, K- 
32. ( S ” )  -+ K- 
33. (PEAK) --* K+ 

K- 
34. (SEGMENT) - E 

- n  
Note: [ X I  means that X is optional. 
Description of the Auxiliary Semantic Routines and Functions 

I )  Auxiliary Semantic Routine qrs-calc: It performs the following tasks: 
a) It sets the value of the metavariable SUCCESS according to: 

if1 (Cy= ei > c l )  then SUCCESS: = “false” endif 
for i: = 1 to n-  1 do begin 

end 
if 1 (angle(i) < c 2 )  then SUCCESS: =“false” endif 

where n is the number of waves in the QRS complex. 
b) It stores the component waves of a QRS complex as well as their attributes. 
c) It computes the distances of the QRS complex from the existing QRS classes. Then, it finds the class with the 

minimum distance as well as the minimum distance. If the minimum distance is less than a preset threshold t ,  it 
assigns this QRS to that class. Otherwise, it initiates a new class for this QRS. 

2) Auxiliary Semantic Routine tp-calc: It performs the following tasks: 
a) It sets the value of the metavariable SUCCESS according to: 

if 1 (E:= , ei I c l )  then SUCCESS: = “false” endif 
for i: = 1 to q do begin 
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if, (ldur, > c3 A rduri > c3) then SUCCESS: = “false” endif 
if, (lhi > c4 A rhi > c4) then SUCCESS: =“false” endif 

end 

where q is the number of waves in the P or T complex. 
b) It stores the component waves of a P or a T complex as well as their attributes. 

3) Auxiliary Semantic Function angZe(i): It computes the angle between the right arm of peak Pi and the left arm 
of peak Pi + , , where the peaks Pi and Pi + , are consecutive. 
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