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Cone Algorithm: An Extension 
of the Perceptron Algorithm 

S. J. Wan 

Abstmet-The perceptron convergence theorem played an important 
role in the early development of machine learning. Mathematidy, the 
perceptron learning algorithm is an iterative procedure for finding a 
separating hyperplane for a finite set of linearly separable vectors, or 
equivalently, for finding a separating hyperplane for a finite set of linearly 
contained vectors. In this paper, we show that the perceptron algorithm 
can be extended to a more general algorithm, called the cone algorithm, 
for finding a covering cone for a finite set of linearly contained vectors. A 
proof of the convergence of the cone algorithm is given. The relationship 
between the cone algorithm and other related algorithms is discussed. 
The equivalence of the problem of finding a covering cone for a set of 
linearly contained vectors and the problem of finding a solution cone for 
a system of homogeneous linear inequalities is established. 

Index rems- Machine learning, perceptron, linearly separable sets, 
linearly contained sets, covering cones, solution cones, linear inequalities. 

I. INTRODUCTION 
A set of vectors is linearly contained if all the vectors in the set 

are distributed on one side of a homogeneous hyperplane. A covering 
cone of a linearly contained set is a circular hypercone which encloses 
all the vectors in the set. The problem of finding a covering cone 
of a linearly contained set may arise in some applications such as 
machine learning [3], [9], [13], computational geometry [IO], and 
stability analysis [2], [4], [7]. 

The perceptron learning algorithm was developed in the early 
1960s for modeling the learning process of a neuron in the human 
brain [ I l l .  Mathematically, it is an iterative procedure for finding a 
separating hyperplane for a finite set of linearly separable vectors [3], 
or equivalently, for finding a separating hyperplane for a finite set of 
linearly contained vectors [5], [9]. 

Let X = {XI, x2, . . . , xm } be a set of vectors in an n-dimensional 
Euclidean space R”. Suppose each vector in X belongs to one of 
two classes XI or X2. The set X is said to be linearly separable [3] 
if there exists a homogeneous hyperplane: 

n 

WTX = c w j z ,  = 0 
j = 1  
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> 0 i f x ,  EX1 
< 0 i f x ,  E X 2  

WTX* = 2 w,zij{ 
,=1 
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where T denotes the transpose of a vector, and w is the normal 
vector of the hyperplane. 

The perceptron algorithm finds a separating hyperplane for a set 
of linearly separable vectors by iterations. It starts with an arbitrary 
normal vector wo. The normal vector is then modified according to 
the following correction rule: 

The well-known perceptron convergence theorem is stated below [3], 

Theorem I :  If X is linearly separable, the above procedure 
will converge to a vector w satisfying ( 2 )  in a finite number of 
iterations. 

A set of vectors Y = {y1 , y ~ ,  . . . , ym } is said to be linearly 
contained [9] if all vectors in Y are distributed on one side of a 
homogeneous hyperplane. In other words, Y is linearly contained if 
there exists a separating hyperplane defined by (1)  satisfying: 

~51, PI.  

A linearly separable set X can be transferred to a linearly contained 
set Y by changing the sign of the vectors in one class, Le., 

y = {x I x E Xl} u {-x I x E X,}. 

Fig. 1 depicts a linearly contained set Y transferred from a linearly 
separable set X. 

With a minor modification, the perceptron algorithm can be used 
for finding a separating hyperplane for a set Y of linearly contained 
vectors [5]. Starting with an arbitrary normal vector WO, the normal 
vector is then modified according to the following correction rule: 

or equivalently, 

where (wk,yz) represents the angle between Wk and yz. The 
perceptron convergence theorem in this case is stated as follows [5]: 

Theorem 2: If Y is linearly contained, the above procedure 
will converge to a vector w satisfying (4 )  in afinite number of 
iterations. 

In this paper, we show that the perceptron algorithm can be 
extended to a more general algorithm, called the cone algorithm, for 
finding a covering cone for a finite set of linearly contained vectors. 
A proof of the convergence of the cone algorithm is given. The 
relationship between the cone algorithm and other related algorithms 
is discussed. The equivalence of the problem of finding a covering 
cone for a set of linearly contained vectors and the problem of finding 
a solution cone for a system of homogeneous linear inequalities is 
established. 
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x2 A W  

x = {Xl, X2, X3, X4, X5, X6) 

Fig. 1. A linearly contained set Y transferred from a linearly separable set X 

Fig. 2. Three covering cones of Y .  

11. THE CONE ALGORITHM 
In (6), the perceptron algorithm is expressed as a procedure for 

adjusting angles between the normal vector wk of a hyperplane and 
the vectors in Y .  The normal vector Wk is rotated towards yz if 
the angle between w k  and yz is larger than or equal to 90". The 
perceptron convergence theorem guarantees that this procedure stop 
in a finite number of iterations. The problem that we are interested in 
is what would happen if we modify 0 = 90" in (6) to 0" < 0 5 90". 
Does the perceptron algorithm still converge in this case? To answer 
this question, we first introduce the notion of covering cones. 

A hypercone with axis w and angle 0 in R" is defined by: 

C(W,@) = (xl(w,x) 5 0,x E R"} 

where w # 0 and 0" 5 0 5 90'. A hypercone C(w,O) is said 
to be a covering cone of a set Y of linearly contained vectors if 
(w, yl) 5 0 for all yt E Y .  A covering cone of Y with the smallest 
angle is called the smallest covering cone, denoted by C(ws, 0,). A 
covering cone of Y with the largest angle (e = 90") is a halfspace 
bounded by the separating hyperplane wTx = 0. Fig. 2 depicts three 
covering cones of Y. 

By modifying 0 = 90" in (6) to 0" < 0 5 go', the percep- 
tron algorithm becomes a more general algorithm, called the cone 
algorithm, stated as follows: 

The cone algorithm: Starting with an arbitrary axis WO, if a vector 
yz in Y is not enclosed by the hypercone c(wk,@), the axis wk 

is modified by: 

Wk+l = Wk +yt, if (wk,yz) 2 0 (0" < 0 5 90")- (7) 

The convergence of the cone algorithm is stated below. 
Theorem 3 (the cone algorithm convergence theorem): Let Y be 

a set of linearly contained vectors and C(w,, 6 , )  be the smallest 

Y = {Xl, x2, x3, -x4, -xs, - X h )  

k+l 

Fig. 3. An illustration of the convergence of the cone algorithm. 

covering cone of Y .  If 0, < 6 ,  then each correction given by (7)  
will bring wk closer to w, when k is large enough, namely, 

(Wk+l ,Ws)  < (wk,ws), i f k  > KO- (8) 

Prooj? See the Appendix. 
The convergence of the cone algorithm may be illustrated by Fig. 

3. The length of the normal vector Wk can become arbitrarily large 
with the increase of k, but the length of each vector yz in Y is fixed. 
When k is large enough, if (wk, yz) 2 8, then w k  is rotated towards 
y1 for a small amount, which brings wk+l closer to ws. 

The convergence speed of the cone algorithm may be improved by 
introducing a proper coefficient pk in the correction rule, namely, 

wk+l = w k  + PkYz if (wk,yz), > 0, (0" < 0 5 90") (9) 

where P k  controls the rotation angle of wk towards yz. 

algorithm and other related algorithms, and other related issues. 
In what follows, we discuss the relationship between the cone 

A. The Cone Algorithm Versus the Perceptron Algorithm 
The only difference between the cone algorithm and the perceptron 

algorithm (the version for linearly contained sets) is the condition for 
modifying the vector Wk. In the perceptron algorithm (refer to (6)), 
if a vector y; E Y is not located in the halfspace defined by the 
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hyperplane, then the normal vector wk of the hyperplane is modified 
towards this vector. The perceptron algorithm stops when a separating 
hyperplane of Y is obtained. In the cone algorithm (refer to (7)), if a 
vector y1 E Y is not located in the covering cone c(wk, e), then the 
axis wk of the covering cone is modified towards this vector. The 
cone algorithm stops when a covering cone of Y is obtained. From a 
geometric point of view, the perceptron algorithm can be viewed as 
a procedure of adjusting the normal vector of a hyperplane so that all 
the vectors in Y are distributed on one side of the hyperplane, while 
the cone algorithm adjusts the axis of a hypercone so that all the 
vectors in Y are enclosed by the hypercone. Because a hyperplane 
is a special case of a hypercone (0 = go"), the perceptron algorithm 
is a special case of the cone algorithm. 

B. The Cone Algorithm Versus Other Related Algorithms 
There are a number of gradient descent algorithms such as the 

relaxation procedures [l], [6] and variable increment procedures [3] 
designed for solving a system of inhomogeneous linear inequalities: 

(10) 

where bl  , b:, , . . . , b ,  are positive constants. These algorithms can be 
written in the following form: 

wTy, > b, ,  i = 1 , 2 , .  . . , m, 

wk+1 = wk -k pkyz, if W ~ Y Z  5 bc, (11) 

where p k  is a parameter. Compared with these algorithms, the 
perceptron algorithm can be viewed as an approach for finding a 
solution vector w for a system of homogeneous linear inequalities: 

wTy,>O, i = 1 , 2  ,..., m. (12) 

It is clear that any solution of (10) is also a solution of (12), but the 
converse may not necessarily be true. Thus, the algorithms described 
in (1 1) are more general than the perceptron algorithm. 

On the other hand, the cone algorithm is designed for finding a 
solution vector w for the following nonlinear inequalities: 

wTy, 2 IIwlllly,llcosB, i = 1 , 2 , .  . . ,m.  (13) 

If a solution w to (13) is found, a solution w' to (10) can be 
constructed based on w as follows: 

/ b  w = - w  
a 

where 

b > Maxb,, a = Min (wTy.). 

Conversely, given a solution w' to (lo), one may not be able to 
construct a solution to (13) based on w'. In other words, the cone 
algorithm can solve (lo), but the algorithms described in (1 1) cannot 
solve (13). The cone algorithm is more general than these algorithms. 

C. The Smallest Covering Cone 
By decreasing the angle 0 step by step, the cone algorithm can find 

a series of covering cones of Y approaching the smallest covering 
cone of Y. This may be done by setting the initial angle B = 90". 
The angle is then decreased by a fixed quantity 6 each time when 
the cone algorithm converges. The parameter S can be set in advance 
according to the accuracy required. Because the cone algorithm will 
not converge when 6' becomes smaller than e,, a terminating condition 
(for instance, a fixed number of passes over Y )  should be added in 
the procedure to prevent an infinite loop. 

To test the above procedure, we randomly created lo00 20- 
dimensional vectors in a hypercone with 0 = 70". Half of these 
vectors are distributed on the boundary of the hypercone. This 

TABLE I 
THE CLOSENESS BETWEEN c (wS,  6,) AND ~ ( w ,  e). 

hypercone can be treated approximately as the smallest covering cone 
C(ws, 0,) of the lo00 vectors. The cone algorithm is applied to this 
set of linearly contained vectors with the initial angle setting 8 = 90". 
Decreasing the angle by b = 5" at each step, five covering cones were 
obtained. Table I lists the angles between w, and the axes of the five 
covering cones. It can be seen that when 6' decreases, the axis w of 
the covering cone approaches war 

D. The Largest Solution Cone 
The problem of finding a covering cone of Y = { yl , yz , . . . , ym } 

is closely related to the one of finding a solution cone for a system 
of homogeneous linear inequalities: 

w T y , > 0 ,  i = 1 , 2  ,..., m. (14) 

If Y is linearly contained, there exist many solutions to (14). 
Geometrically, all the solutions can be obtained in the following 
way. Each vector yz defines a halfspace bounded by a homogeneous 
hyperplane with yz as its normal vector. The intersection of the m 
halfspaces forms the solution region of (14), denoted by S. It can 
be shown that the solution region S is a convex polyhedral cone in 
R" [8, 121. A solution cone of (14) is a hypercone enclosed by the 
solution region. A solution cone is said to be the largest solution cone 
if its angle is the largest among all the solution cones of (14). 

Theorem4 Let Y be a set of linearly contained vectors. 
C(w, e )  is a covering cone of Y if and only if C(w, 90" - e )  
is a solution cone of (14). 

Proof: See Appendix. 
Theorem 4 indicates that there is a one-to-one correspondence 

between a covering cone of Y and a solution cone of (14). In a 
special case 0 = Os, it states that C(ws, 0,) is the smallest covering 
cone of Y if and only if C(w,,90° - e,) is the largest solution 
cone of (14). Fig. 4 describes the relationship between the smallest 
covering cone of Y and the largest solution cone of (14). Note that 
the largest solution cone is enclosed by the solution region S. 

From a stability point of view, the solution ws is superior to 
any other solution in the solution region S because it can tolerate a 
maximum disturbance from all directions. In a noisy communication 
channel, the received signal y: may be different from the transmitted 
signal y.. However, if (yI,y:) 5 90" - e,, w, will remain to be a 
solution of the system. Note that 90" -8, is the maximum disturbance 
angle that the system can tolerate. 

111. CONCLUSION 
It is shown that the perceptron algorithm can be extended to a 

more general algorithm, namely the cone algorithm, for finding a 
covering cone of a linearly contained set. It is also shown that there 
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Fig. 4. The smallest covering cone and the largest solution cone. 

Applying induction to (19), we obtain 
is a one-to-one correspondence between a covering cone of a linearly 
contained set and a solution cone of a system of homogeneous linear @TWk 2 kP cos @, + A, for k > 0 

. inequalities. Compared with other gradient descent algorithms, the 
cone algorithm is a more general method for solving a system of 
inhomogeneous linear inequalities. 

The main weakness of the cone algorithm is that it does not provide 

converge. This is an inherent weakness of the gradient descent type 
of algorithms, including the perceptron algorithm. 

where X = %Two is a finite real number. Since Y is linearly 
contained, p and cos@, are greater than zero. By the assumption 
@' < @' we have ' O' 'Os " > O' If we choose 

a bound on the number of iterations required for the algorithm to y - 2ffX 

then, 



or equivalently, 

This completes the proof. 0 
The following lemma is needed for the proof of Theorem 4. 
Lemma I :  For any vectors x, y, z E R", the following in- 

equality holds: 

Proofi Because the length of the vectors in (23) is immaterial, 
It is assumed, without loss of generality, that x, y, z are unit vectors. 

We first construct a vector y' based on x, y. z as follows: 

where 

sin y 
sin p sin B a =  b =  -, p =  (x,z), y =  (a,y). 

It then follows that 

l[y'1[2 = a2 - 2abcosP + b2 = 1 
zTy' = a - b c o s p  = cosy 

T I  x y = a c o s p - b = c o s ( p + y )  

This means that y' is a unit vector, 

and 

Theorem 4: Let Y be a set of linearly contained vectors. 
C(w, e )  is a covering cone of Y if and only if C(w, 90" - 0) 
is a solution cone of (14). 

Proof: We first show that C(w, 90" - 8) is a solution cone of 
(14) if C(w,e) is a covering cone of Y. 

Because C(w,e) is a covering cone of Y, (w,yz) 5 0 for all 
yz E Y. For any x E C(w, 90" - e) ,  we have (x,w) 5 90" - 0.  It 
follows from Lemma 1 that for any yt E Y, 

( x , Y ~ )  5 (x,w) + ( w , Y ~ )  5 (90" - 0) + 8 = go", 

or 

xTy,>_O, i = 1 , 2  ,..., m. (32) 

This means that x is a solution of (14). Because (32) holds for any 
x E C(w,90" - e) ,  we conclude that C(w,90° - 6') is a solution 
cone of (14). 

Conversely, suppose C(w, 90" - e )  is a solution cone of (14). We 
show that C(w,O) is a covering cone of Y. 

For any yz E Y, we can construct a vector x as follows: 

where 

sin ( P  + 7) sin y p = (w,y,), y = 90" - e. > b = - sin p ' a =  

We have, 

(34) )lx1(' = a' - 2abcosp + b2 = 1, 

and, 

xTw = a - b c o s p  = COS? 

or 

( x , ~ )  = y = 90" - 8. 

(26) Eq. (35) indicates x E C(w,90° - e) .  Therefore, 

(x,yZ) i go", for any y. E Y. 

(X,Y'> = P + y = (x, z) + (2,y). (27) On the other hand, from (33), 
T Y. x - = a c o s p - b = c o s ( p + y )  

Next, we introduce another vector z' defined by: IIYZ 11 

cos (9) 
cos (9) . 

Z' = d z ,  d = ____ 
which means (x,yl)  = p + y, or 

(X,YZ) = (W,YZ) + (x,w). (37) 

It can be shown that Combining (39437)  yields 

(w, yz) = (x, y.) - (x, w) 5 goo - (90" - e )  = e, 
for al ly ,  E Y. (38) IIX - 2/11 + IIZ' - Y'll = llx - Y'I). (28) 

0 Note that y and y' are unit vectors. It follows from (26) that Thus, we conclude that C(w, 0) is a covering cone of Y .  

From the triangle inequality and (28), (29), 

Ilx-Yll i l l ~ -~ ' l l+ l l~ ' -Yl l  = llx--'II+lI~'-Yylll = llx-Y'll. 
(30) 

Because x, y, y' are unit vectors, 
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