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Bayesian Decision Theory

The Basic Idea

To minimize errors, choose the least risky
class, i.e. the class for which the expected loss
is smallest

Assumptions

Problem posed in probabilistic terms, and all
relevant probabilities are known




Probability Mass vs. Probability
Density Functions

Probability Mass Function, P(x)

Probability for values of discrete random variable x. Each
value has its own associated probability

P(x) > 0, and Plx)=1 b
@ ; @) Prlz € (a,b)] :/ p(z) dx
Probability Density, p(x) p(x) > 0 and /OO p(x) do =1

Probability for values of continuous random variable x.
Probability returned is for an interval within which the
value lies (intervals defined by some unit distance)
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Prior Probability

Definition ( P(w ) )

The likelihood of a value for a random variable

representing the state of nature (true class for the
current input), in the absence of other information

® [nformally,“what percentage of the time state X
occurs”

Example

The prior probability that an instance taken from
two classes is provided as input, in the absence of

any features (e.g. P(cat) = 0.3, P(dog) = 0.7)
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Class-Conditional Probability Density
Function (for Continuous Features)

Definition (p(x|w))

The probability of a value for continuous
random variable x, given a state of nature in

A\

® For each value of x, we have a different class-
conditional pdf for each class in w (example

next slide)
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Example: Class-Conditional
Probability Densities

px|w,)
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FIGURE 2.1. Hypothetical class-conditional probability density functions show the
probability density of measuring a particular feature value x given the pattern is in
category w;. If x represents the lightness of a fish, the two curves might describe the
difference in lightness of populations of two types of fish. Density functions are normal-

ized, and thus the area under each curve is 1.0. From: Richard O. Duda, Peter E. Hart,

and David G. Stork, Pattern Classification. Copyright © 2001 by John Wiley & Sons,
Inc.
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Bayes Formula

Pl la) — p(z|w;) P(w;) posterior = likelihood x prior
(wjlz) = , '
p(z) evidence

C

where p(x) = ZP@M)PWJ')

j=1
Purpose

Convert class prior and class-conditional
densities to a posterior probability for a class: the
probability of a class given the input features

(‘post-observation’)
RIT 2 X
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Example: Posterior Probabilities

: X
9 10 11 12 13 14 15

FIGURE 2.2. Posterior probabilities for the particular priors P(wy) = 2/3 and P(w,)
= 1/3 for the class-conditional probability densities shown in Fig. 2.1. Thus in this
case, given that a pattern is measured to have feature value x = 14, the probability it is
in category w, is roughly 0.08, and that it is in wq is 0.92. At every x, the posteriors sum
to 1.0. From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification.
Copyright © 2001 by John Wiley & Sons, Inc.
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Choosing the Most Likely Class

What happens if we do the following?
Decide wy if P(wy|z) > P(ws|x); otherwise decide ws

A. We minimize the average probability of
error. Consider the two-class case from
previous slide:

P(error|z) = P(wi|z) if we choose ws
| Plwsalz) if we choose w;

P(error) :/ P(error|x)p(z) dx (average error)

o0
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Expected Loss or Conditional Risk
of an Action

R(oy|x) = Z Aag|w;) P(w;|x)

Explanation

The expected (“‘average”) loss for taking an
action (choosing a class) given an input
vector, for a given conditional loss function

(lambda)
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Decision Functions and
Overall Risk

R = /R(a(az)\w)p(x) dx

Decision Function or Decision Rule

( alpha(x) ): takes on the value of exactly one
action for each input vector x

Overall Risk

The expected (average) loss associated with
a decision rule
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Bayes Decision Rule

ldea

Minimize the overall risk, by choosing the action
with the least conditional risk for input vector x

Bayes Risk (R*)

The resulting overall risk produced using this
procedure. This is the best performance that can
be achieved given available information.
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Bayes Decision Rule: Two
Category Case

Bayes Decision Rule

For each input, select class with least
conditional risk, i.e. choose class one if:

R(aq|x) < R(ag|x)

where 0\ = Malw;)

R(a1]|x) = A1 P(w1]x) + A2 P(wo|x)

R(ag|x) = A1 P(w1|x) + A2 P(wa|x)




Alternate Equivalent Expressions of Bayes
Decision Rule (“Choose Class One If...”)

Posterior Class Probabilities
()\21 — )\11)P(W1’X) > ()\12 — AQQ)P(WQ‘X)

Class Priors and Conditional Densities

Produced by applying Bayes Formula to the above,
multiplying both sides by p(x)

(A21 — A1)p(x|wr) P(wr) > (A1 — Ag2)p(x|wa) P(ws)

Likelihood Ratio  P(Xlw1) _ Az = An Plws)
RIT p(X|wa) ~ Aot — Air Plwy)

[
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The Zero-One Loss

Definition

01=9 . .
)\(Oézlw]):{l Z#; 7’7.]:17'“70

Conditional Risk for Zero-One Loss

R(a;|x) = Z)\ a;|lw;) P(w;i|x) = ZP(wj\X) = 1—P(w;|x)

JF

Bayes Decision Rule (min. error rate)

Decide w; if P(wj|x) > P(w;|x) forall j #1

F-[‘]

/J
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Example: Likelihood Ratio

p(x|w,)
plx|w,)

4

D D

R R, R, R

FIGURE 2.3. The likelihood ratio p(x|wi)/p(x|w,) for the distributions shown in
Fig. 2.1. If we employ a zero-one or classification loss, our decision boundaries are
determined by the threshold 6,. If our loss function penalizes miscategorizing w, as w;
patterns more than the converse, we get the larger threshold 6, and hence R, becomes
smaller. From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classifica-
tion. Copyright © 2001 by John Wiley & Sons, Inc. Z
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Bayes Classifiers

Recall the “Canonical Model”

Decide class i if:
gi(x) > g;j(x) forall j #1

For Bayes Classifiers

Use the first discriminant def’n below for
general case, second for zero-one loss

g9i(x) = —R(a|x)
g9i(x) = P(wi|x)
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Equivalent Discriminants for Zero-
One Loss (Minimum-Error-Rate)

Trade-off

Simplicity of understanding vs. computation

p(x|w;) P(w;)
S o/ WYY )

g9i(x) = p(x|w;) P(w;)

g;(x) = In p(x|w;) + In P(w;)
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Discriminants for Two Categories

For Two Categories

We can use a single discriminant function,
with decision rule: choose class one if the
discriminant returns a value > 0.

Example: Zero-One Loss
g9(x) = Plwi]x) — P(wa|x)

| PX|w)
p(x|ws) P(ws)

g(x) =




Example: Decision Regions for
Binary Classifier
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0.3 p(x|w,)P(w,)

0.2

0.1

decision
boundary

FIGURE 2.6. In this two-dimensional two-category classifier, the probability densities
are Gaussian, the decision boundary consists of two hyperbolas, and thus the decision
region R, is not simply connected. The ellipses mark where the density is 1/e times
that at the peak of the distribution. From: Richard O. Duda, Peter E. Hart, and David G.
Stork, Pattern Classification. Copyright © 2001 by John Wiley & Sons, Inc.
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The (Univariate) Normal
Distribution

Why are Gaussians so Useful?

They represent many probability
distributions in nature quite accurately. In
our case, when patterns can be represented
as random variations of an ideal prototype
(represented by the mean feature vector)

® Everyday examples: height, weight of a
population

R-1-T £




Univariate Normal Distribution

p(x)

2.5% 2.5%

w-20 p-o 7 w+o u+20

FIGURE 2.7. A univariate normal distribution has roughly 95% of its area in the range
X — i| < 20, as shown. The peak of the distribution has value p() = 1/+/2mo. From:
Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright
© 2001 by John Wiley & Sons, Inc.
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Formal Definition

Peak of the Distribution (the mean)
1

2mo

Has value:

Definition for Univariate Normal
1 lfr—p ’
P(az)maexp[ 2( ~ ) ]

Def. for mean, variance 7 :/ z p(x) dx
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Multivariate Normal Density

Informal Definition

A normal distribution over two or more
variables (d variables/dimensions)

Formal Definition

) = g 0 | xS

u:/_ZXp(X) dx

5 = / (x — p)(x — )'p(x)dx

24




The Covariance Matrix

()

For our purposes...

Assume matrix is positive definite, so the
determinant of the matrix is always positive

Matrix Elements

® Main diagonal: variances for each individual
variable

® Off-diagonal: covariances of each variable
pairing i & j (note: values are repeated, as
matrix is symmetric)
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Independence and Correlation

For multivariate normal covariance matrix

e Off-diagonal entries with a value of O indicate
uncorrelated variables, that are statistically
independent (variables likely do not influence one
another)

® Roughly speaking, covariance positive if two
variables increase together (positive correlation),
negative if one variable decreases when the other
increases (negative correlation)




A Two-Dimensional Gaussian
Distribution, with Samples Shown

> X,

FIGURE 2.9. Samples drawn from a two-dimensional Gaussian lie in a cloud centered
on the mean u. The ellipses show lines of equal probability density of the Gaussian.
From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copy-
right © 2001 by John Wiley & Sons, Inc.




Linear Transformations in a 2D
Feature Space

R-I-T
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Discriminant Functions ( gi(x) )
for the Normal Density

Discriminant Functions

We will consider three special cases for:
® normally distributed features, and

® minimum-error-rate classification (0-1 loss)
Recall:  gi(x) = Inp(x|w;) + In P(w;)

if p(z|w;) ~ N(u, i) then approx. P(X|wi)
1 1

USII’IgI p(X) — (27-‘-)d/2|2‘1/2 CXP _é(x o lu)tz_l(x o :u)

;29




Minimum Error-Rate Discriminant Function for
Multivariate Gaussian Feature Distributions

In (natural log) of

1 1 _

p(x) = o

gives a general form for our discriminant functions:




Special Cases for Binary
Classification

Purpose
Overview of commonly assumed cases for feature likelihood densities, p(XM)

® Goal: eliminate common additive constants in discriminant functions.
These do not affect the classification decision (i.e. define gj(x) providing
“just the differences”)

® Also, look at resulting decision surfaces ( defined by gi(x) = gj(x) )

Three Special Cases

|. Statistically independent features, identically distributed Gaussians for
each class

2. ldentical covariances for each class

3. Arbitrary covariances




Case |: X, = 0°1

1 d 1
gi(x) = _§(X — )" (x — ) — B In 27 — 5 In ||+ In P(w;)

Remove:

Items in red: same across classes (“unimportant additive constants”)

Inverse of Covariance Matrix: X, = (1/0°)1

Only effect is to scale vector product by 1/02

Discriminant function:

(x — )" (x — 1)
202

gi(x) = — + In P(w;)

1
gi(w) = —5 5 X% = 2% + g’ pui] + In P(w;) 3

o
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Case |: X, = 0°1

Linear Discriminant Function

Produced by factoring the previous form
gi(x) = Wix + wi

1 1) 1 t
gi(x) = —SHIX = o ik T In P(w;)

Threshold or Bias for Class i: wio

Change in prior translates decision boundary

33




Case |: X, = 0°1

Decision Boundary: gi(z) = g;(z)
w'(x —xg) = 0
1 o’ P(w;)

i a= (5l 1) = s I = 1) )

® Decision boundary goes through x0 along line between
means, orthogonal to this line

® |f priors equal, x0 between means (minimum distance
classifier), otherwise x0 shifted

® If variance small relative to distance between means,
priors have limited effect on boundary location yZ

o
™
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o
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Case |: Statistically Independent
Features with ldentical Variances

p(xlw;) )
1 W
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FIGURE 2.10. If the covariance matrices for two distributions are equal and proportional to the identity
matrix, then the distributions are spherical in d dimensions, and the boundary is a generalized hyperplane of
d — 1 dimensions, perpendicular to the line separating the means. In these one-, two-, and three-dimensional
examples, we indicate p(x|w;) and the boundaries for the case P(w1) = P(w;). In the three-dimensional case,
the grid plane separates R from R,. From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern

Classification. Copyright © 2001 by John Wiley & Sons, Inc.
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Case |l: Identical Covariances, 2J; = .

1 d 1
gi(x) = —§(x — )" (x — ) — B In 2w — 7 In | 3] + In P(w;)

Remove

Terms in red; as in Case | these can be ignored (same
across classes)

Squared Mahalanobis Distance (yellow)

Distance from x to mean for class i, taking covariance
into account; defines contours of fixed density

RI-T <, 3
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Case |l: Identical Covariances, 2J; = .

Expansion of squared Mahalanobis distance
(x—p1) B (x—p15)

the last step comes from symmetry of the
covariance matrix and thus its inverse:

Zt — 2’ (Z—l)t — 2—1

Once again, term above in red is an additive
wsonstant independent of class, and can be removed
- , 38
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Case |l: Identical Covariances, 2J; = .

Linear Discriminant Function

gz(il?) — WPX -+ wW;0
gi( ) (2 Nz) X _§N o Nz+ In P(wz)

Decision Boundary: g;(z) = g;(z)
w'(x —xg) = 0

(2 (i —p)) " (x— (;(“i + 1) = (145 I—HE)(;I){(P:ZU‘B 13

=0

(1))

39




Case |l: Identical Covariances, 2J; = .

Notes on Decision
Boundary

® As for Case |, passes
through point x0 lying

on the line between the

two class means. Again,
X0 in the middle if
priors identical

® Hyperplane defined by
boundary generally not
orthogonal to the line
between the two
means
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FIGURE 2.12. Probability densities (indicated by the surfaces in two dimensions ai
ellipsoidal surfaces in three dimensions) and decision regions for equal but asymm:
ric Gaussian distributions. The decision hyperplanes need not be perpendicular to t
line connecting the means. From: Richard O. Duda, Peter E. Hart, and ﬁid G. Sjr(@
Pattern Classification. Copyright © 2001 by John Wiley & Sons, Inc. 4




Case lll: arbitrary 2;

1 d 1
gi(x) = —§(x — )" (x — ) — B In2m — 5 In | 3] + In P(w;)

Remove

Can only remove the one term in red above

Discriminant Function (quadratic)
gi(x) = 2" Wix + wiz + wio
1 t

1 1
gi(x) = xt(—iZ,;l)x%—(Z;l,ui)tx—5,%-2;1%—5ln 13|+ 1n P(w;)

RIT .
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Case lll: arbitrary 2;

Decision Boundaries

Are hyperquadrics: can be hyperplanes,
nyperplane pairs, hyperspheres,
nyperellipsoids, hyperparabaloids,
nyperhyperparabaloids

Decision Regions

Need not be simply connected, even in one
dimension (next slide)

42
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Case 3:Arbitrary Covariances

pxjw;)

L
R R, R,

1

FIGURE 2.13. Non-simply connected decision regions can arise in one dimensions for
Gaussians having unequal variance. From: Richard O. Duda, Peter E. Hart, and David
G. Stork, Pattern Classification. Copyright © 2001 by John Wiley & Sons, Inc.
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More than Two Categories

Decision Boundary

Defined by two most
likely classes for each
segment

Other Distributions

Possible; underlying
Bayesian Decision Theory
is unmodified, however

45
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Discrete Features

Roughly speaking...

Replace probability densities by probability
mass functions. Expressions using integrals
are changed to use summations, e.g.

[ pixt) 2 Plocks)

x|w;) P(w;)
P(x)

Bayes Formula  P(w;x) = 2t

Cc

P(x) =) P(x|w;)P(w))

J=1

46




Example: Independent Binary
Features

Binary Feature Vector

x = {xl, ...,xd} of 0/1 -valued features, where
each xi is 0/| with probability: p; = Pr|z; = 1|w]

Conditional Independence

Assume that given a class, the features are
independent

Likelihood Function P(xlwr) sz 1= pp)!
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