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+ Error Surfaces 
 Backpropagation is based on gradient descent in a 

criterion function, we can gain understanding and 
intuition about the algorithm by studying error 
surfaces------the function J(w) 

 Some general properties of error surfaces  

 Local minima 

    if there are many local minima plague the error 
landscape, then it is unlikely that the network will find the 
global minimum. 

 Presence of plateaus 

    Regions where the error varies only slightly as a function 
of weights.  

 We can explore these issues in some illustrative systems 

+ Some small networks (1) 

The data shown are linearly 
separable, and the optimal 
decision boundary, a point near 
x1=0, separates the two 
categories. During learning, the 
weights descend to the global 
minimum, and the problem is 
solved. 

The simplest three-layer nonlinear network, here solving a two-category 
problem in one dimension. 

+
Some small networks (1)   cont’d


Here the error surface has 
a single minimum, which 
yields the decision point 
separating the patterns of 
the two categories. 
Different plateaus in the 
surface correspond roughly 
to different numbers of 
patterns properly classified; 
the maximum number of 
such misclassified pattern 
is four in this example. 

+
Some small networks (2) 

Note that overall the error 
surface is slightly higher 
than before because even 
the best solution attainable 
with this network leads to 
one pattern being 
misclassified. 

The patterns are not linearly separable; there are two forms of 
minimum error solution; these correspond to -2<x*<-1 and 
1<x*<2, in which one pattern is misclassified. 

+
Conclusions 

 From these very simple examples, where the 
correspondences among weight values, decision 
boundary, and error are manifest, we can see how 
the error of the global minimum is lower when the 
problem can be solved. 

 The surface near w≈0 , the traditional region for 
starting learning, has high error and happens in this 
case to have a large slope 
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+
The Exclusive-OR(XOR) 

+
The Exclusive-OR(XOR)  cont’d 

 The error varies a bit more gradually as a function of 
a single weight than does the error in the networks 
solving the problem in the last two examples. This is 
because in a large network any single weight has on 
average a smaller relative contribution to the output.  

 The error surface is invariant with respect to certain 
discrete permutations. For instance, if the labels on the 
two hidden units are exchanged, and the weight values 
changed appropriately, the shape of the error surface 
is unaffected. 

+ Larger Networks 

 For a network with many weights solving a complicated 
high-dimensional classification problem, the error varies 
quite gradually as a single weight is changed.  

 Whereas in low-dimensional spaces, local minima can be 
plentiful, in high dimension, the problem of local minima 
is different: The high-dimensional space many afford 
more ways for the system to “get around” a barrier or 
local maximum during learning. The more superfluous 
the weights, the less likely it is a network will get trapped 
in local minima. 

 However, networks with an unnecessarily large number of 
weights are undesirable because of the dangers of 
overfitting. 

+
How Important are Multiple Minima 

 The possibility of the presence of multiple local minima is one reason 
that we resort to iterative gradient descent ( analytic methods are highly 
unlikely to find a single global minimum), especially in high-dimensional 
weight spaces. In computational practice, we do not want our network to 
be caught in a local minimum having high training error because this 
usually indicates that key features of the problem have not been learned 
by the network. In such cases it is traditional to reinitialize the weights 
and train again. 

 In many problems, convergence to a nonglobal minimum is 
acceptable, if the error is nevertheless fairly low. Furthermore, common 
stopping criteria demand that training terminate even before the 
minimum if reached, and thus it is not essential that  the network be 
converging toward the global minimum for acceptable performance. 

 In short, the presence of multiple minima does not necessarily present 
difficulties in training nets. 

+ 

6.5 Back propagation  
as feature mapping 

+
The X-OR Problem 

 Training neural network (without backpropagation) 
for X-OR problem…  
… Solution unreachable! 

Figure from http://gseacademic.harvard.edu/ 
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+From Pattern Classification Point of 
View 

 The input patterns are linearly inseparable 

Figure from R. O. Duda, P. E. Hart, Pattern classification, 2001. 

+Solving the Problem with 
Backpropagation 

 Add hidden layers with 
weight-adjustable nodes 

 Weights are adjusted with 
backpaopagation of 
errors 

 Discrete thresholding 
function is replaced with 
a continuous (sigmoid) 
one 

Figure from http://www.hpcc.org/ 

+From Pattern Classification Point of 
View 

 The hidden units 
contribute to 
nonlinear warping 
of input patterns to 
order to make them 
linearly separable 

Figure from R. O. Duda, 
P. E. Hart, Pattern 
classification, 2001. 

+Generalization: Bit Parity Problem 

 Number of 1s  is odd  ->  1 

                Otherwise   -> -1 

 3-bit parity problem can be solved by 3-3-1 
backpropagation network with bias 

 N-bit parity problem can be solved with a  neural 
network that allows direct connections between 
input units and output units, with chosen activation 
function [1] 

[1] M. E. Hohil, D. Liu, S. H. Smith, “Solving the N-bit parity problem 
using neural networks”, Neural Networks, 1999. 

+
Weights in Hidden Layer 

 Hidden-to-output weights leads to 
linear discriminant 

 Input-to-hidden weights are most 
instructive 

    - “finding features” (not exact but 
convenient) 

+64-2-3 network for classifying three characters 

Figure from R. O. Duda, P. E. Hart, Pattern classification, 2001. 
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+ 60-3-2 Network for Classifying Sonar Signals 
[2] 

[2] R. P. Gorman, T. 
J. Sejnowski, 
“Analysis of hidden 
units in a layered 
network trained to 
classify sonar 
targets”, Neural 
Networks, 1988. 

+
Weights of One Hidden Node 

+ 

6.6 Backpropagation, Bayes 
theory and probability 

+
Backpropagation, Bayes theory and 
probability 

 While multilayer neural networks may appear to be 
somewhat ad hoc, we now show that when trained via 
back propagation on a sum squared error criterion they 
form a least squares fit to the Bayes discriminant 
functions. 

 In chapter 5, the LMS algorithm computed the 
approximation to the Bayes discriminant function for 
two-layer nets. We now generalize this result in two 
ways: to multiple categories and to nonlinear functions 
implemented by three layer neural networks. 

+
Bayes discriminants and neural 
networks 

 Recall first Bayes’ formula: 

 Bayes decision for any pattern x: choose the category      
having the largest discriminant function: 

+
Bayes discriminants and neural 
networks 

 Suppose we train a network having c output units with a 
target signal according 

 The contribution to the criterion function based on a 
single output unit k for finite number of training samples 
x is: 
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+
Bayes discriminants and neural 
networks 

 Where n is the total number of training patterns,    of 
which are in  

+
Bayes discriminants and neural 
networks 

 In the limit of infinite data we can use Bayes’ formula to 
express the equation above [3]. 

 The backpropagation rule changes weights to minimize 
the left hand side of the equation above. 

[3] Ruck, D.W., Rogers, S.K., Kabrisky, M., Oxley, M.E., Suter, B.W. “The 
multilayer perceptron as an approximation to a Bayes optimaldiscriminant 
function”. IEEE Transactions on Neural Networks. Volume 1, P:296-298, 
1990. 

+
Bayes discriminants and neural 
networks 

 For each category       (k = 1, 2, ..., c), 
 backpropagation minimizes the sum: 

 Thus in the limit of infinite data the outputs of the 
trained network will approximate (in a least-
squares sense) the true a posterior probabilities, 
that is, the output units represent the a posterior 
probabilities. 

+
Outputs as probabilities 
 In the previous subsection we saw one way to make the 

c output units of a trained net represent probabilities by 
training with 0–1 target values.  

 While indeed given infinite amounts of training data 
(and assuming the net can express the discriminants, 
does not fall into an undesirable local minimum, etc.), 
then the outputs will represent probabilities.  

 If these conditions do not hold — in particular we have 
only a finite amount of training data — then the outputs 
will not represent probabilities; for instance there is no 
guarantee that they will sum to 1.0. In fact, if the sum of 
the network outputs differs significantly from 1.0 within 
some range of the input space, it is an indication that 
the network is not accurately modeling the posteriors. 

+
Outputs as probabilities 

 Softmax method — a smoothed or softmax continuous 
version of a winner-take-all nonlinearity in which the 
maximum output is winnertake-all transformed to 1.0, 
and all others reduced to 0.0. 

 The softmax output finds theoretical justification if for 
each category Wk the hidden unit representations y can 
be assumed to come from an exponential distribution 

+
Conclusion 

 A neural network classifier trained in this manner 
approximates the posterior probabilities           , 
whether or not the data was sampled from unequal 
priors            . If such a trained network is to be 
used on problems in which the priors have been 
changed, it is a simple matter to rescale each 
network output,                           by the ratio of such 
priors. 
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+ Questions? 

Thank you  


