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+ The Bayes Classifier 

 Maximum-likelihood methods: 

   parameter vector θ is a fixed but unknown value 

 Bayes methods: 

   parameter vector θ is a random variable with known 
prior distribution 

+ The Bayes Classifier 
Bayes Formula: 

  information from samples 

Assumptions: 

 1. Classes number c is known. 

 2. Prior probabilities               for each class are known, k = 1, . . . , c. 

 3. Forms of the class-conditional probability densities                          are known. 

 4. Part of our knowledge about θ is from a known prior density          . 

 5. Rest knowledge about θ is from the set of samples D. 

+ The Bayes Classifier 

                   unknown 

 Based on the assumptions, we have 

   where                                   and  

                                     x is independent of the samples             class has nothing to do with distribution of θ 

+ The Bayes Classifier 

 Estimate of                is obtained by averaging 

                       over      

 The task at hand now is to estimate               from the 
sample set D. 

+
The basic equations for unsupervised 
Bayesian learning 

 The Posterior Density : 

 The likelihood yielded by the samples: 

 The Posterior Density in recursive form: 
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+ The relation between Bayesian and the M-L solutions 

 Again, the posterior density: 

 This equation emphasizes the relation between the Bayesian and the 
maximum-likelihood solutions.  

If              is essentially uniform over the region where              peaks, then     

           peaks at the same place.  
 1. The only significant peak occurs at 
 2. The peak is very sharp 
 We can get: 

+ The relation between Bayesian and the M-L solutions 
cont’d


 Conclusions: The use of the maximum-likelihood estimate    as if it 
were the true value of    in designing the Bayes classifier. 

 Discussions: 

 If there are a large amounts of data, maximum-likelihood and Bayes 
methods will agree (or nearly agree). 

 If there are only a  small amounts of data, there exist some small problems 
where the approximations are poor. 

+
Supervised and unsupervised learning 

 Differences: 

 Lack of identifiability ( main difference) 

With supervised learning, it merely means that instead of obtaining a 
unique parameter vector we obtain an equivalence class of parameter 
vectors. 

With unsupervised learning, it may cause serious problems. When  
can’t be determined uniquely, the mixture can’t be decomposed into its 
true components.  

 Computational complexity 

Supervised learning: the possibility of finding sufficient statistics allows 
solutions that are analytically pleasing and computationally feasible. 

Unsupervised learning:  there is no way to avoid the fact that the 
samples are obtained from a mixture density. 

+
Supervised and unsupervised learning 
cont’d


From the above equation,  it is not easy for us to find a simple exact 
solutions for  

€ 

p(D |θ) = [ p(xk |w j ,θ j )p(w j )
j=1

c

∑ ]
k=1

n

∏

Again, the likelihood 

1.               is the sum of cn products of component densities. Each 
term in this sum can be interpreted as the joint probability of 
obtaining the samples x1,…xn.. 

2.  If the component densities do not overlap, thus as  varies, only 
one term in the mixture density is nonzero. € 

p(D |θ)

+
Supervised and unsupervised learning 
cont’d

 Another way to compare supervised and unsupervised learning : 

 Substitute the mixture density for  

 Let p(w1)=1 and all the other prior probabilities are zero. 

Unsupervised 

Supervised 

+ Example 1: Unsupervised learning of Gaussian Data 

  Consider the one-dimensional, two-component mixture with  

where     ,  P(w1) and P(w2) are known. 

We seek the mean of the second component. Suppose that the 
prior density       is uniform from a to b, Then after one 
observation (x=x1) we can get. 
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+
Example 1 cont’d 

 Discussions: 

+
Example 1 cont’d


Consider a second sample x2 

Unfortunately, the primary thing we learn from this expression is already 

Complicated when n=2. With n samples there will be 2n terms, as a 
result , the computational cost will be very heavy. 

+
Example 1 cont’d


So it is possible to use the following relation. 

+
Example 1 cont’d


Discussion: 

One of the main differences between the Bayesian and the 
maximum-likelihood approaches to unsupervised learning is 
the presence of the prior density   

+ Decision-Directed Approximation 
•  Why: both maximum-likelihood and the bayesian methods have high computational 

requirements. 

•  Solutions: because the difference between supervised and unsupervised learning is the 
presence of labels, it is natural to propose the following: 

 Use prior information to train a classifier. 

 Label new data with this classifier. 

 Use the new labeled samples to train a new (supervised) classifier. 

• This approach is known as the decision-directed approach [1] to unsupervised learning. 

• Obvious limitations include: 

 If the initial classifier is not reasonably good, the process can diverge. 

 The tails of the distribution tend not to be modeled well this way, which results in 
significant overlap between the component densities. 

• In practice, this approach works well because it is easy to leverage previous work for the 
initial classifier. 

• Also, it is less computationally expensive than the pure Bayesian unsupervised learning 
approach. 

• [1] “Classical adaptive algorithms (LMS, RLS, CMA, decision directed) seen as recursive 
structures” by P. Duhamel, M. Montazeri and K. Hilal. 

+ 

10.7 Criterion Functions 
For Clustering 
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+ Criterion Functions for 
Clustering 

 Purpose: measures the clustering quality of any 
partition of the data. 

 Suppose: a set D of n samples X1, X2,…Xn is 
classified into c clusters D1, D2,…Dc. 

 Samples in the same cluster are more similar than 
samples in different clusters. 

 Finds a the partition that optimizes the criterion 
function 

+ The Sum-of-Squared-Error 
Criterion 

 Simplest and most widely used one: 

                      where        is the number of samples in 

                                          is the mean of the samples  

    Sum-of-squared errors: 

                                 c is the number of clusters 

    The optimal partitioning is defined as one that     

    minimizes       (minimum variance) 

+ The Sum-of-Squared-Error 
Criterion 

 Problem: 
  Work well when clusters form compact clouds 

  Fail when there are great differences in the number of samples in 
different clusters. 

+
Related Criteria 
 Rewrite the criterion function 

Si is the average squared distance between points in 
the i-th cluster (a similarity function) € 

Je = || x −mi ||
2

x∈Di

∑
i=1

c

∑

where

mi =
1
ni

x
x∈Di

∑

€ 

Je =
1
2

nis i
i=1

c

∑

where

s i =
1

ni
2 || x − x ' ||2

x'∈Di

∑
x∈Di

∑

+ Related Criteria - Continued 

 The similarity function can be replaced 
by other appropriate similarity functions 

 e.g. the average, the median or even the 
maximum distance between points in a 
cluster 

+10.7.3 Scatter Criteria – Another 
type of Criterion Functions 

 Definition of Scatter Matrix 
 Scatter matrix for the i-th cluster 

 Within-cluster scatter matrix 

 Between-cluster scatter matrix € 

Si = (x −mi)(x −mi)
t

x∈Di

∑

€ 

SW = Si
i=1

c

∑

€ 

SB = ni (mi −m)(mi −m)
t

i=1

c

∑

€ 

whereas

mi =
1
n

x
x∈Di

∑

m =
1
n

nimi
i=1

c

∑

(Cluster mean) 

(Total mean) 
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 Total Scatter Matrix 

 Is the sum of within-cluster scatter matrix and 
between-cluster scatter matrix 

 Not dependent on the formation of clusters 

 Only dependent on all samples 

€ 

ST = (x −m)(x −m)t
x∈D
∑

€ 

whereas

m =
1
n

nimi
i=1

c

∑
(Total mean) 

+
How to measure a scatter matrix? 

Trace 
Criterion 

• Sum of 
diagonal 
elements 

Determinant 
Criterion 

• Determinant 
of the matrix 

Invariant 
Criterion 

• Appropriate 
functions of 
eigenvalues 

• Appropriate 
functions of 
eigenvalues 

+
Trace Criterion 

 Minimize the sum of diagonal elements of Sw - 

 Or maximize 

Interesting fact: 
€ 

tr[SW ]

€ 

tr[SB ]

€ 

tr[SW ] = tr[Si] = || x −mi ||
2= Je

x∈Di

∑
i=1

c

∑
i=1

c

∑

+ Determinant Criterion 

 Minimize the determinant of SW -    |Sw| 

 SB is not chosen because it will become 
singular if the number of clusters is less 
than or equal to the dimensionality 

 Minimizing Jd is similar to minimizing Je , but 
not necessarily the same 

€ 

Jd = SW = Si
i=1

c

∑

+
Invariant Criteria 

 Maximize 

 Or minimize 

Whereas λi are eigenvalues of 

Eigenvalue – a scalar value for linear 
transformation that only changes the 
eigenvector’s length but not direction 

€ 

tr[SW
−1SB ] = λi

i=1

d

∑

€ 

J f = tr[ST
−1SW ] =

1
1+ λii=1

d

∑

€ 

SW
−1SB

+

Are they the same? 

Trace 
Criterion 

• Sum of 
diagonal 
elements 

Determinant 
Criterion 

• Determinant 
of the matrix 

Invariant 
Criterion 

• Appropriate 
functions of 
eigenvalues 
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+
Trace criterion 

(Tend to equal 
the number of 
points in each 

cluster) 

Determinant 
criterion 

(Tend to form 
large and 

small clusters) 

Invariant 
criterion 

(subtle) 

Figure from R. O. Duda, P. E. Hart, Pattern classification, 2001. 

+ A Comparison of Cluster Validity 
Criteria For a Mixture of Normal 
Distributed Data [2] 
 Clustering experiment based on 21 different criteria for 

simulated Gaussian data sets 

 Conclusion: the most reliable criteria among the ones that 
they tested were:  

(1)  The trace average density criterion (trace of fuzzy 
covariance matrix)  

(2)  The Steinberg±Zeitouni criterion [3] 

(3)  The modified trace criterion ( tr[SW]/c ).  

[2] A. Geva et al, "A comparison of cluster validity criteria for a mixture of normal distributed data", 
Pattern Recognition Letters, 2000. 
[3] Y. Steinberg and O. Zeitouni, “On tests for normality”, IEEE Trans. Inform. Theory, Vol. 38, 1992. 

+ Questions? 

Thank you  


