Programming Language Theory

Evaluation Contexts, First-Class Continuations, and Continuation-Passing-Style
Type Systems Respite

Let’s spend one lecture on a somewhat different topic.

▶ How operational semantics can be defined more concisely, and how they can be related to abstract machines.

▶ How lambda-calculus can be extended with *first-class continuations*, a powerful *control operator*.

▶ Some programming idioms related to these concepts.
(Simply-Typed) Lambda Calculus with Extensions (pairs, sums, fix)

Syntax:

\[
\begin{align*}
 e & ::= \lambda x. \ e \mid x \mid e \ e \mid \\
 & \quad (e, e) \mid e.1 \mid e.2 \mid \\
 & \quad \text{L}(e) \mid \text{R}(e) \mid \text{case } e \text{ of } \text{L}(x) => e \mid \text{R}(y) => e \mid \\
 & \quad \text{fix } e \\
 v & ::= \lambda x. \ e \mid (v, v) \mid \text{L}(v) \mid \text{R}(v)
\end{align*}
\]
(Simply-Typed) Lambda Calculus with Extensions (pairs, sums, fix)

Small-step, call-by-value (CBV), left-to-right operational semantics:

\[
\begin{align*}
\frac{e_f \rightarrow_{cbv} e'_f}{e_f \, e_a \rightarrow_{cbv} e'_f \, e_a} & \quad \frac{e_a \rightarrow_{cbv} e'_a}{v_f \, e_a \rightarrow_{cbv} v_f \, e'_a} & \quad (\lambda x. e_b) \, v_a \rightarrow_{cbv} e_b[v_a/x] \\
\frac{e_1 \rightarrow_{cbv} e'_1}{(e_1, e_2) \rightarrow_{cbv} (e'_1, e_2)} & \quad \frac{e_2 \rightarrow_{cbv} e'_2}{(v_1, e_2) \rightarrow_{cbv} (v_1, e'_2)} \\
\frac{e_p \rightarrow_{cbv} e'_p}{e_p.1 \rightarrow_{cbv} e'_p.1} & \quad \frac{e_p \rightarrow_{cbv} e'_p}{(v_1, v_2).1 \rightarrow_{cbv} v_1} & \quad \frac{e_p \rightarrow_{cbv} e'_p}{e_p.2 \rightarrow_{cbv} e'_p.2} & \quad \frac{e_p \rightarrow_{cbv} e'_p}{(v_1, v_2).2 \rightarrow_{cbv} v_2} \\
\frac{e_s \rightarrow_{cbv} e'_s}{\text{case } e_s \text{ of } L(x) = \Rightarrow e_l \mid R(y) = \Rightarrow e_r \rightarrow_{cbv} \text{ case } e'_s \text{ of } L(x) = \Rightarrow e_l \mid R(y) = \Rightarrow e_r} \\
\frac{e_1 \rightarrow_{cbv} e'_1}{L(e_1) \rightarrow_{cbv} L(e'_1)} & \quad \frac{e_2 \rightarrow_{cbv} e'_2}{R(e_2) \rightarrow_{cbv} R(e'_2)} & \quad \frac{e_f \rightarrow_{cbv} e'_f}{\text{case } L(v_1) \text{ of } L(x) = \Rightarrow e_l \mid R(y) = \Rightarrow e_r \rightarrow_{cbv} e_l[v_1/x]} \\
\frac{e_f \rightarrow_{cbv} e'_f}{\text{case } R(v_2) \text{ of } L(x) = \Rightarrow e_l \mid R(y) = \Rightarrow e_r \rightarrow_{cbv} e_r[v_2/y]} \\
\frac{e_f \rightarrow_{cbv} e'_f}{\text{fix } e_f \rightarrow_{cbv} \text{fix } e'_f} & \quad \frac{\text{fix } (\lambda x. e_b) \rightarrow_{cbv} e_b[\text{fix } (\lambda x. e_b)/x]}{\text{fix } (\lambda x. e_b) \rightarrow_{cbv} e_b[\text{fix } (\lambda x. e_b)/x]}
\end{align*}
\]
Small-step, \textit{call-by-value (CBV)}, left-to-right operational semantics:

\[
\begin{align*}
ef \rightarrow_{\text{cbv}} e'_f \\
e_f e_a \rightarrow_{\text{cbv}} e'_f e_a
\end{align*}
\]

\[
\begin{align*}
ea \rightarrow_{\text{cbv}} e'_a \\
v_f e_a \rightarrow_{\text{cbv}} v_f e'_a
\end{align*}
\]

\[
\begin{align*}
(\lambda x. e_b) v_a \rightarrow_{\text{cbv}} e_b[v_a/x]
\end{align*}
\]

\[
\begin{align*}
e_1 \rightarrow_{\text{cbv}} e'_1 \\
(e_1, e_2) \rightarrow_{\text{cbv}} (e'_1, e_2)
\end{align*}
\]

\[
\begin{align*}
e_2 \rightarrow_{\text{cbv}} e'_2 \\
(v_1, e_2) \rightarrow_{\text{cbv}} (v'_1, e'_2)
\end{align*}
\]

\[
\begin{align*}
ep \rightarrow_{\text{cbv}} e'_p \\
ep \cdot 1 \rightarrow_{\text{cbv}} e'_p \cdot 1
\end{align*}
\]

\[
\begin{align*}
(v_1, v_2) \cdot 1 \rightarrow_{\text{cbv}} v_1
\end{align*}
\]

\[
\begin{align*}
ep \rightarrow_{\text{cbv}} e'_p \\
ep \cdot 2 \rightarrow_{\text{cbv}} e'_p \cdot 2
\end{align*}
\]

\[
\begin{align*}
(v_1, v_2) \cdot 2 \rightarrow_{\text{cbv}} v_2
\end{align*}
\]

\[
\begin{align*}
es \rightarrow_{\text{cbv}} e'_s
\end{align*}
\]

\[
\begin{align*}
\text{case } e_s \text{ of } L(x) \Rightarrow e_l | R(y) \Rightarrow e_r \rightarrow_{\text{cbv}} \text{ case } e'_s \text{ of } L(x) \Rightarrow e_l | R(y) \Rightarrow e_r
\end{align*}
\]

\[
\begin{align*}
e_1 \rightarrow_{\text{cbv}} e'_1 \\
L(e_1) \rightarrow_{\text{cbv}} L(e'_1)
\end{align*}
\]

\[
\begin{align*}
e_2 \rightarrow_{\text{cbv}} e'_2 \\
R(e_2) \rightarrow_{\text{cbv}} R(e'_2)
\end{align*}
\]

\[
\begin{align*}
\text{case } L(v_1) \text{ of } L(x) \Rightarrow e_l | R(y) \Rightarrow e_r \rightarrow_{\text{cbv}} e_l[v_1/x]
\end{align*}
\]

\[
\begin{align*}
\text{case } R(v_2) \text{ of } L(x) \Rightarrow e_l | R(y) \Rightarrow e_r \rightarrow_{\text{cbv}} e_r[v_2/y]
\end{align*}
\]

\[
\begin{align*}
e_f \rightarrow_{\text{cbv}} e'_f \\
\text{fix } e_f \rightarrow_{\text{cbv}} \text{ fix } e'_f
\end{align*}
\]

\[
\begin{align*}
\text{fix } (\lambda x. e_b) \rightarrow_{\text{cbv}} e_b[\text{fix } (\lambda x. e_b)/x]
\end{align*}
\]
(Simply-Typed) Lambda Calculus with Extensions (pairs, sums, fix)

Small-step, call-by-value (CBV), left-to-right operational semantics:

\[
\begin{align*}
\frac{e_f \rightarrow_{cbv} e'_f}{e_f \ e_a \rightarrow_{cbv} e'_f \ e_a} & \quad \frac{e_a \rightarrow_{cbv} e'_a}{v_f \ e_a \rightarrow_{cbv} v_f \ e'_a} & \quad (\lambda x. \ e_b) \ v_a \rightarrow_{cbv} e_b[v_a/x] \\
\frac{e_1 \rightarrow_{cbv} e'_1}{(e_1, e_2) \rightarrow_{cbv} (e'_1, e_2)} & \quad \frac{e_2 \rightarrow_{cbv} e'_2}{(v_1, e_2) \rightarrow_{cbv} (v'_1, e'_2)} \\
\frac{e_p \rightarrow_{cbv} e'_p}{e_p.1 \rightarrow_{cbv} e'_p.1} & \quad \frac{e_p \rightarrow_{cbv} e'_p}{(v_1, v_2).1 \rightarrow_{cbv} v_1} & \quad \frac{e_p \rightarrow_{cbv} e'_p}{(v_1, v_2).2 \rightarrow_{cbv} v_2} \\
\frac{e_s \rightarrow_{cbv} e'_s}{\text{case } e_s \text{ of } L(x) => e_l \ | \ R(y) => e_r \rightarrow_{cbv} \text{ case } e'_s \text{ of } L(x) => e_l \ | \ R(y) => e_r} \\
\frac{e_1 \rightarrow_{cbv} e'_1}{L(e_1) \rightarrow_{cbv} L(e'_1)} & \quad \frac{e_2 \rightarrow_{cbv} e'_2}{R(e_2) \rightarrow_{cbv} R(e'_2)} & \quad \frac{e_f \rightarrow_{cbv} e'_f}{\text{fix } e_f \rightarrow_{cbv} \text{ fix } e'_f} & \quad \frac{\text{fix } (\lambda x. \ e_b) \rightarrow_{cbv} e_b[\text{fix } (\lambda x. \ e_b)/x]}{\text{case } L(v_1) \text{ of } L(x) => e_l \ | \ R(y) => e_r \rightarrow_{cbv} e_l[v_1/x]} & \quad \frac{\text{case } R(v_2) \text{ of } L(x) => e_l \ | \ R(y) => e_r \rightarrow_{cbv} e_r[v_2/y]}{\text{fix } (\lambda x. \ e_b) \rightarrow_{cbv} e_b[\text{fix } (\lambda x. \ e_b)/x]} \\
\end{align*}
\]

Note: lots of “boring inductive rules”
(Simply-Typed) Lambda Calculus with Extensions (pairs, sums, fix)

Small-step, call-by-value (CBV), left-to-right operational semantics:

\[e_f \rightarrow_{cbv} e'_f \]
\[e_f \ e_a \rightarrow_{cbv} e'_f \ e_a \]
\[e_a \rightarrow_{cbv} e'_a \]
\[v_f \ e_a \rightarrow_{cbv} v'_f \ e'_a \]

\[(\lambda x. \ e_b) \ v_a \rightarrow_{cbv} e_b[v_a/x] \]

\[e_1 \rightarrow_{cbv} e'_1 \]
\[(e_1, e_2) \rightarrow_{cbv} (e'_1, e_2) \]

\[e_2 \rightarrow_{cbv} e'_2 \]
\[(v_1, e_2) \rightarrow_{cbv} (v'_1, e'_2) \]

Note: lots of “boring inductive rules” with some “interesting do-work rules”
Rethinking Small-Step Operational Semantics

Every $e \rightarrow_{cbv} e'$ derivation uses some "boring inductive rules" and one "interesting do-work rule".

Therefore, executing a program works like:

- Find the next "primitive step"
 - (function application, pair selection, case dispatch, recursion unrolling)
- Perform that "primitive step"
- Plug the result back into the rest of the program
- Repeat (next "primitive step" could be at a new place)
- Until program is a value (or is "stuck")

Move the first step out and produce a data structure that describes where the next "primitive step" occurs.
Evaluation Contexts

Define evaluation contexts:

- expressions with one “hole” where the “interesting work” may occur

\[
E ::= [\cdot] \mid E \; e \mid v \; E \\
(E, e) \mid (v, E) \mid E.1 \mid E.2 \\
L(E) \mid R(E) \mid \text{case } E \text{ of } L(x) \Rightarrow e \mid R(y) \Rightarrow e \mid \text{fix } E
\]

Define “filling the hole” \(E[e] \) in the obvious way.

- A metafunction of type \(\text{EvalContext} \rightarrow \text{Exp} \rightarrow \text{Exp} \)

Semantics now uses two judgements \(e \rightarrow_{\text{cbvc}} e' \) and \(e \xrightarrow{p} e' \), but the former has only 1 rule and the latter has just the “interesting work”.

Evaluation Contexts

\[e \xrightarrow{cbvc} e' \]

\[e = E[e_a] \quad e_a \xrightarrow{p}_{cbvc} e'_a \quad E[e'_a] = e' \]
\[e \xrightarrow{cbvc} e' \]

\[(\lambda x. e_b) \nu_a \xrightarrow{p}_{cbvc} e_b[\nu_a/x] \]

\[(v_1, v_2) .1 \xrightarrow{p}_{cbvc} v_1 \quad (v_1, v_2) .2 \xrightarrow{p}_{cbvc} v_2 \]

\[\text{case } L(v_1) \text{ of } L(x) \Rightarrow e_l \mid R(y) \Rightarrow e_r \xrightarrow{p}_{cbvc} e_l[v_1/x] \]

\[\text{case } R(v_2) \text{ of } L(x) \Rightarrow e_l \mid R(y) \Rightarrow e_r \xrightarrow{p}_{cbvc} e_r[v_2/y] \]

\[\text{fix } (\lambda x. e_b) \xrightarrow{p}_{cbvc} e_b[\text{fix } (\lambda x. e_b)/x] \]
Evaluation Contexts

\[e \rightarrow_{cbvc} e' \]

\[e_a \xrightarrow{p} _{cbvc} e'_a \]

\[E[e_a] \rightarrow_{cbvc} E[e'_a] \]

\[e \xrightarrow{p} _{cbvc} e' \]

\[(\lambda x. e_b) v_a \xrightarrow{p} _{cbvc} e_b[v_a/x] \]

\[(v_1, v_2).1 \xrightarrow{p} _{cbvc} v_1 \quad (v_1, v_2).2 \xrightarrow{p} _{cbvc} v_2 \]

\[\text{case } L(v_1) \text{ of } L(x) = \rightarrow e_l \mid R(y) = \rightarrow e_r \xrightarrow{p} _{cbvc} e_l[v_1/x] \]

\[\text{case } R(v_2) \text{ of } L(x) = \rightarrow e_l \mid R(y) = \rightarrow e_r \xrightarrow{p} _{cbvc} e_r[v_2/y] \]

\[\text{fix } (\lambda x. e_b) \xrightarrow{p} _{cbvc} e_b[\text{fix } (\lambda x. e_b)/x] \]
Evaluation Contexts: So what?

Thus far, all we have done is rearrange our semantics to be more concise.

- Each boring rule becomes a form of E

Evaluation relies on decomposition:

- Given e, find an E, e_a, e'_a such that $e = E[e_a]$ and $e_a \xrightarrow{p}_{cbvc} e'_a$.

Theorem (Unique Decomposition): For all e, there is at most one decomposition of e into an E and e_a (such that $e_a \xrightarrow{p}_{cbvc} e'_a$).

- When is there no decomposition?
Evaluation Contexts: So what?

Thus far, all we have done is rearrange our semantics to be more concise.

- Each boring rule becomes a form of E

Evaluation relies on decomposition:

- Given e, find an E, e_a, e'_a such that $e = E[e_a]$ and $e_a \xrightarrow{p}_{cbvc} e'_a$.

Theorem (Unique Decomposition): For all e, there is at most one decomposition of e into an E and e_a (such that $e_a \xrightarrow{p}_{cbvc} e'_a$).

- When is there no decomposition?

Unique Decomposition means that

- Evaluation is deterministic
- Progress (restated): If e is well-typed, then e is a value or there is a decomposition of e.

Evaluation Contexts

In fact, don’t even need two judgements:

\[e \rightarrow_{\text{cbvc}} e' \]

\[
E[(\lambda x. e_b) \mathbf{v}_a] \rightarrow_{\text{cbvc}} E[e_b[\mathbf{v}_a/x]]
\]

\[
E[(\mathbf{v}_1, \mathbf{v}_2).1] \rightarrow_{\text{cbvc}} E[\mathbf{v}_1]
\]

\[
E[(\mathbf{v}_1, \mathbf{v}_2).2] \rightarrow_{\text{cbvc}} E[\mathbf{v}_2]
\]

\[
E[\text{case } L(\mathbf{v}_1) \text{ of } L(x) \Rightarrow e_l \mid R(y) \Rightarrow e_r] \rightarrow_{\text{cbvc}} E[e_l[\mathbf{v}_1/x]]
\]

\[
E[\text{case } R(\mathbf{v}_2) \text{ of } L(x) \Rightarrow e_l \mid R(y) \Rightarrow e_r] \rightarrow_{\text{cbvc}} E[e_r[\mathbf{v}_2/y]]
\]

\[
E[\text{fix } (\lambda x. e_b)] \rightarrow_{\text{cbvc}} E[e_b[\text{fix } (\lambda x. e_b)/x]]
\]
Evaluation Contexts: So what?

Small-step semantics (old) and evaluation-context semantics (new) are very similar:

- \(e \rightarrow_{\text{cbv}} e' \) if and only if \(e \rightarrow_{\text{cbvc}} e' \).
 (total equivalence of \(\rightarrow_{\text{cbv}} \) and \(\rightarrow_{\text{cbvc}} \) semantics)

- Just rearranged things to be more concise:
 each boring rule became a form of \(E \)
 (Proofs aren't necessarily any easier; will often need induction on \(E \).)

- Both “work” the same way:
 - Find the next “primitive step”
 (function application, pair selection, case dispatch, recursion unrolling)
 - Perform that “primitive step”
 - Plug the result back into the rest of the program
 - Repeat (next “primitive step” could be at a new place)
 - Until program is a value (or is “stuck”)

Evaluation contexts so far just cleanly separate the “find and plug” from the “perform that primitive step” by building an explicit \(E \).
Evaluation Contexts: So what?

But, now that we have defined E explicitly in our *metalanguage*, what happens if we allow E in our *language*:

- Moving from metalanguage to language is called *reification*
- Programs (in language) might save and restore evaluation contexts

Sufficient for

- Exceptions
- Cooperative threads / coroutines / iterators
- “Time travel” with stacks
- `setjmp/longjmp`
First-class Continuations

First-class continuations in one slide:

\[
\begin{align*}
e & ::= \cdots \mid \text{letcc } x.\ e \mid \text{throw } e\ e \mid \text{cont } E \\
v & ::= \cdots \mid \text{cont } E \\
E & ::= \cdots \mid \text{throw } E\ e \mid \text{throw } v\ E
\end{align*}
\]

\[
\begin{align*}
E[\text{letcc } x.\ e] & \rightarrow_{\text{cbvc}} E[e[\text{cont } E/x]] \\
E[\text{throw } (\text{cont } E')\ v] & \rightarrow_{\text{cbvc}} E'[v]
\end{align*}
\]

- letcc $x.\ e$ gets the current evaluation context (“grab the stack”)
- throw (cont E') v restores an old evaluation context (“jump somewhere”)
- cont E stores an evaluation context as a value (“saved stack”)
 - cont E shouldn’t appear in source programs
Examples: Exception-like

\[
\text{letcc } k. (\text{throw } k \ 3) \rightarrow_{\text{cbvc}}^{*}
\]

\[
\text{letcc } k. \ 3 \rightarrow_{\text{cbvc}}^{*}
\]

\[
1 + (\text{letcc } k. (\text{throw } k \ (3 + 5))) \rightarrow_{\text{cbvc}}^{*}
\]

\[
1 + (\text{letcc } k. (3 + \text{throw } k \ 5)) \rightarrow_{\text{cbvc}}^{*}
\]

\[
1 + (\text{letcc } k. (\text{throw } k \ (\text{throw } k \ (\text{throw } k \ 3))))) \rightarrow_{\text{cbvc}}^{*}
\]
Examples: Exception-like

\[
\text{letcc } k. \ (\text{throw } k \ 3) \rightarrow_{\text{cbvc}}^* \ 3
\]

\[
\text{letcc } k. \ 3 \rightarrow_{\text{cbvc}}^*
\]

\[
1 + (\text{letcc } k. \ (\text{throw } k \ (3 + 5))) \rightarrow_{\text{cbvc}}^*
\]

\[
1 + (\text{letcc } k. \ (3 + \text{throw } k \ 5)) \rightarrow_{\text{cbvc}}^*
\]

\[
1 + (\text{letcc } k. \ (\text{throw } k \ (\text{throw } k \ (\text{throw } k \ 3)))) \rightarrow_{\text{cbvc}}^*
\]
Examples: Exception-like

\[
\text{letcc } k. (\text{throw } k \ 3) \rightarrow^*_{\text{cbvc}} 3
\]

\[
\text{letcc } k. \ 3 \rightarrow^*_{\text{cbvc}} 3
\]

\[
1 + (\text{letcc } k. (\text{throw } k \ (3 + 5))) \rightarrow^*_{\text{cbvc}}
\]

\[
1 + (\text{letcc } k. (3 + \text{throw } k \ 5)) \rightarrow^*_{\text{cbvc}}
\]

\[
1 + (\text{letcc } k. (\text{throw } k \ (\text{throw } k \ (\text{throw } k \ 3)))) \rightarrow^*_{\text{cbvc}}
\]
Examples: Exception-like

\[
\text{letcc } k. (\text{throw } k \ 3) \rightarrow_{\text{cbvc}} 3
\]

\[
\text{letcc } k. \ 3 \rightarrow_{\text{cbvc}} 3
\]

\[
1 + (\text{letcc } k. (\text{throw } k (3 + 5))) \rightarrow_{\text{cbvc}} 9
\]

\[
1 + (\text{letcc } k. (3 + \text{throw } k \ 5)) \rightarrow_{\text{cbvc}}
\]

\[
1 + (\text{letcc } k. (\text{throw } k (\text{throw } k (\text{throw } k \ 3)))) \rightarrow_{\text{cbvc}}
\]
Examples: Exception-like

\[
\text{letcc } k. (\text{throw } k \ 3) \rightarrow_{\text{cbvc}} ^* 3
\]

\[
\text{letcc } k. 3 \rightarrow_{\text{cbvc}} ^* 3
\]

\[
1 + (\text{letcc } k. (\text{throw } k \ (3 + 5))) \rightarrow_{\text{cbvc}} ^* 9
\]

\[
1 + (\text{letcc } k. (3 + \text{throw } k \ 5)) \rightarrow_{\text{cbvc}} ^* 6
\]

\[
1 + (\text{letcc } k. (\text{throw } k (\text{throw } k (\text{throw } k \ 3)))) \rightarrow_{\text{cbvc}} ^*
\]
Examples: Exception-like

\[\text{letcc } k. (\text{throw } k \ 3) \rightarrow_{\text{cbvc}} 3\]

\[\text{letcc } k. \ 3 \rightarrow_{\text{cbvc}} 3\]

\[1 + (\text{letcc } k. (\text{throw } k \ (3 + 5))) \rightarrow_{\text{cbvc}} 9\]

\[1 + (\text{letcc } k. (3 + \text{throw } k \ 5)) \rightarrow_{\text{cbvc}} 6\]

\[1 + (\text{letcc } k. (\text{throw } k \ (\text{throw } k \ (\text{throw } k \ 3)))) \rightarrow_{\text{cbvc}} 4\]
Example: “Time travel”-like

SML/NJ has first-class continuations:

```sml
open SMLofNJ.Cont
val x = ref true (* avoids infinite loop *)
val g : int cont option ref = ref NONE
val y = ref (1 + 2 + (callcc (fn k => ((g := SOME k); 3))))
val z = if !x then (x := false; throw (valOf (!g)) 7) else !y
val _ = print ("z = " ^ (Int.toString z))
```

What would happen if we didn’t use the \(x\) mutable reference?
Example: “Time travel”-like

SML/NJ has first-class continuations:

```sml
open SMLofNJ.Cont
val x = ref true (* avoids infinite loop *)
val g : int cont option ref = ref NONE
val y = ref (1 + 2 + (callcc (fn k => ((g := SOME k); 3))))
val z = if !x then (x := false; throw (valOf (!g)) 7) else !y
val _ = print ("z = " ^ (Int.toString z))
```

```
z = 10
```

What would happen if we didn’t use the \(x\) mutable reference?
Are Continuations Useful?

- Exceptions
 - \texttt{letcc x. e for e handle _ => e'}
 - \texttt{throw x e'} for raise in e
 - (the x thrown to must be the x captured; simpler with a global reference)

- Coroutines
 - \texttt{yield} captures the continuation (the “how to resume me”) and throws it to the other’s “how to resume me”

- Cooperative threads
 - Generalize coroutines; each \texttt{yield} is to thread scheduler (but thread scheduler implemented in language, not runtime system)

- Other crazy things
 - The “goto of functional programming” — incredibly powerful, but non-standard uses are usually inscrutable
 - Key point is that we can “jump back”, unlike exceptions
 - Close connections with recent research on “algebraic effects” (almost all computational effects can be implemented with continuations)
Another View

If you’re confused, think call stacks:

- What if your favorite language had these operations:
 - Store current stack in \(x \)
 - Replace current stack with stack in \(x \)

- Need to “resume the stack’s hole” with something different or when mutable state is different

- (else, you will have an infinite loop)
First-class Continuations

First-class continuations in one slide:

\[
\begin{align*}
e & ::= \cdots \mid \text{letcc } x.\ e \mid \text{throw } e\ e \mid \text{cont } E \\
v & ::= \cdots \mid \text{cont } E \\
E & ::= \cdots \mid \text{throw } E\ e \mid \text{throw } v\ E
\end{align*}
\]

\[
\begin{align*}
E[\text{letcc } x.\ e] & \rightarrow_{\text{cbvc}} E[e[\text{cont } E/x]] \\
E[\text{throw } (\text{cont } E')\ v] & \rightarrow_{\text{cbvc}} E'[v]
\end{align*}
\]

We’ve extended the syntax and operational semantics, now it’s time to extend the type system.
First-class Continuations

First-class continuations in one slide:

\[
e ::= \cdots | \text{letcc } x. e | \text{throw } e e | \text{cont } E
\]

\[
v ::= \cdots | \text{cont } E
\]

\[
E ::= \cdots | \text{throw } E e | \text{throw } v E
\]

\[
\tau ::= \cdots | \text{cont } \tau
\]
First-class Continuations

First-class continuations in one slide:

\[
\begin{align*}
e & ::= \cdots \mid \text{letcc } x. e \mid \text{throw } e \ e \mid \text{cont } E \\
v & ::= \cdots \mid \text{cont } E \\
E & ::= \cdots \mid \text{throw } E \ e \mid \text{throw } v \ E \\
\tau & ::= \cdots \mid \text{cont } \tau
\end{align*}
\]

\[
\Gamma, x : \text{cont } \tau_a \vdash e_b : \tau_a \quad \Gamma \vdash e_k : \text{cont } \tau_a \quad \Gamma \vdash e_a : \tau_a
\]

\[
\Gamma \vdash \text{letcc } x. e_b : \tau_a
\]

\[
\begin{align*}
\Gamma \vdash \text{throw } e_k \ e_a : \tau \\
x \notin FV(E) \quad \cdot, x : \tau_a \vdash E[x] : \tau \\
\Gamma \vdash \text{cont } E : \text{cont } \tau_a
\end{align*}
\]
Connection to Interpreters

A “real” (efficient, natural) interpreter for Lambda Calculus (or ML) would not be like our small-step operational semantics

- Would decompose/plug the whole program for each step!

Instead, maintain the decomposition incrementally

- With a stack \((S)\) of frames \((F)\) to remember “what to work on next”!

\[
F ::= \cdot \; e \mid v \cdot \mid (\cdot, e) \mid (v, \cdot) \mid \cdot.1 \mid \cdot.2 \mid L(\cdot) \mid R(\cdot) \mid \text{case } \cdot \text{ of } L(x) \Rightarrow e \mid R(y) \Rightarrow e
\]

\[
S ::= [] \mid F :: S
\]

\[
e; S \rightarrow e'; S'
\]

The CK machine; one of very many “abstract machines”.
Now individual frames are explicit; one can do really weird things (but we won’t).
Living without letcc x. e, throw e e, and cont E

Remember, the (Untyped) Lambda Calculus could encode all of the features of the (Untyped) Lambda Calculus with Extensions (pairs, sums, fix).

So, Lambda Calculus w/ Extensions (without letcc x. e, throw e e, and cont E) isn’t any more powerful than Lambda Calculus.

Is Lambda Calculus w/ Extensions with letcc x. e, throw e e, and cont E more powerful than Lambda Calculus?
Living without letcc $x.\ e$, throw $e\ e$, and cont E

Remember, the (Untyped) Lambda Calculus could *encode* all of the features of the (Untyped) Lambda Calculus with Extensions (pairs, sums, fix).

So, Lambda Calculus w/ Extensions (without letcc $x.\ e$, throw $e\ e$, and cont E) isn’t any more powerful than Lambda Calculus.

Is Lambda Calculus w/ Extensions with letcc $x.\ e$, throw $e\ e$, and cont E more powerful than Lambda Calculus?

▶ Couldn’t be — Lambda Calculus is *Turing complete*
Living without \texttt{letcc \texttt{x. e, throw e e, and cont E}}

Remember, the (Untyped) Lambda Calculus could \textit{encode}
all of the features of the (Untyped) Lambda Calculus with Extensions
(pairs, sums, fix).

So, Lambda Calculus w/ Extensions (without \texttt{letcc \texttt{x. e, throw e e, and cont E})
isn’t any more powerful than Lambda Calculus.

Is Lambda Calculus w/ Extensions with \texttt{letcc \texttt{x. e, throw e e, and cont E}}
more powerful than Lambda Calculus?

\begin{itemize}
 \item Couldn’t be — Lambda Calculus is \textit{Turing complete}
\end{itemize}

Can we \textit{encode} first-class continuations?
Living without letcc \(x \). \(e \), throw \(e \) \(e \), and cont \(E \)

Can we encode first-class continuations?

Yes: Rather than adding a powerful feature, we can achieve the same effect via a whole-program translation from the Lambda Calculus into a sublanguage (source-to-source transformation).

- No expressions with non-trivial evaluation contexts
- Every expression becomes a continuation-accepting function
- Never “return” — instead, call the current continuation
- (Re)Introduce letcc \(x \). \(e \) and throw \(e \) \(e \) as \(O(1) \) operations
Continuation-Passing-Style Transformation

Intuition:

- Pass the current continuation to every expression
- Represent the current continuation as a function \((\lambda z. E[z])\)
 - The initial continuation is the identity function \((\lambda z. z)\)
- To return a value, apply the current continuation to the value
 - Functions must take an explicit continuation argument
 - Function result sent to the current cont. of the function application
- \texttt{letcc }k. e and \texttt{throw e e} translated away
 - “Funny” manipulations of continuation functions

The target of the transformation is Lambda Calculus w/ Extensions, which we can further encode down to Lambda Calculus.
Continuation-Passing-Style (CPS) Transformation

A metafunction from expressions to expressions.

\[\text{CPS}[e] \equiv \text{CPS}_e[e] \, (\lambda z. \ z) \]

\[\text{CPS}_e[x] \equiv \lambda k. \ k \ x \]
\[\text{CPS}_e[\lambda x. \ e] \equiv \lambda k. \ k \ (\lambda k'. \ \lambda x. \ \text{CPS}_e[e] \, k') \]
\[\text{CPS}_e[e_1 \ e_2] \equiv \lambda k. \ \text{CPS}_e[e_1] \, (\lambda f. \ \text{CPS}_e[e_2] \, (\lambda z. \ f \ k \ z)) \]
\[\text{CPS}_e[(e_1, e_2)] \equiv \lambda k. \ \text{CPS}_e[e_1] \, (\lambda z_1. \ \text{CPS}_e[e_2] \, (\lambda z_2. \ k \ (z_1, z_2))) \]
\[\text{CPS}_e[e.1] \equiv \lambda k. \ \text{CPS}_e[e] \, (\lambda z. \ k \ (z.1)) \]
\[\text{CPS}_e[e.2] \equiv \lambda k. \ \text{CPS}_e[e] \, (\lambda z. \ k \ (z.2)) \]
Properties of the CPS Transformation

- Correctness: e is totally equivalent to $\text{CPS}[e] \equiv \text{CPS}_e[e] (\lambda z. z)$
- If whole program has type τ_P and e has type τ, then $\text{CPS}_e[e]$ has type $(\tau \rightarrow \tau_P) \rightarrow \tau_P$
- Fixes evaluation order: $\text{CPS}_e[e]$ will evaluate e in left-to-right call-by-value
- Other similar transformations encode other evaluation orders
- Every intermediate computation is bound to / named by a variable (helpful for compiler writers)
- For all e evaluation of $\text{CPS}_e[e]$ stays in this sublanguage:

$$
\begin{align*}
 e & ::= v \mid v v \mid v v v \mid v (v.1) \mid v (v.2) \\
 v & ::= x \mid \lambda x. e \mid (v, v)
\end{align*}
$$

- No need for a call-stack: every call is a tail-call
- Now the *program* is maintaining the evaluation context via a closure that has the next “link” in its environment that has the next “link” in *its* environment, . . .
Encoding First-class Continuations

With the CPS transformation,
\[
\text{letcc } x. \, e \text{ and } \text{throw } e \, e \text{ can become } O(1) \text{ operations.}
\]

\[
\begin{align*}
\text{CPS}_e[\text{letcc } k. \, e] & \equiv \lambda k. \text{CPS}_e[e] \, k \\
\text{CPS}_e[\text{throw } e_1 \, e_2] & \equiv \\
& \lambda k. \text{CPS}_e[e_1] \, (\lambda k'. \text{CPS}_e[e_2] \, (\lambda z. k' \, z))
\end{align*}
\]

- letcc get passed the current continuation (just as it needs)
- throw ignores the current continuation (just as it should)

You can also manually program in this style (fully or partially)
- Has other uses as a programming idiom . . .
CPS as an Advanced Programming Idiom

- Because CPS uses only tail calls, it avoid deep call stacks when traversing recursive data structures
 - Recall the \texttt{iter} function from HW2
- A first-class continuation can “reify session state” in a client-server interaction
 - If the continuation is passed to the client, which returns it later, then the server can be stateless.
 - Suggests CPS for web programming
 - Better: tools that do the CPS transformation
 - Gives you a “prompt-client” primitive without server-side state

“Thinking in terms of CPS” is a powerful technique.