Programming Language Theory

Type Safety of the Simply-Typed Lambda Calculus
Outline

- Type-safety proof
 - Detailed proof posted on website
- Discuss the proof
 - Consider lemma dependencies and what they represent
 - Consider elegance of inverting static and dynamic derivations
- Next lecture: Extend STLC
 - Pairs, sums, recursion, …
 - For each, sketch proof additions
 - Discuss the general approach

- On homework: References
- Further ahead: More flexible typing via polymorphism
Lambda Calculus (with constants) Syntax and Substitution

\[
e ::= c \mid x \mid \lambda x. \, e \mid e \, e
\]

\[
v ::= c \mid \lambda x. \, e
\]

Work with terms “up to renaming of bound variables” (“up to alpha-conversion”).

\[
FV(c) = \{\}\quad FV(e_f \, e_a) = FV(e_f) \cup FV(e_a)
\]

\[
FV(x) = \{x\}\quad FV(\lambda x. \, e_b) = FV(e_b) \setminus \{x\}
\]

\[
e_1[e_2/x] = e_3
\]

\[
\begin{align*}
\frac{c[e/x] = c}{c[e/x] = c} & \quad \frac{x[e/x] = e}{x[e/x] = e} & \quad \frac{y \neq x}{y[e/x] = y}
\end{align*}
\]

\[
\begin{align*}
y \neq x & \quad y \not\in FV(e) & \quad e_b[e/x] = e'_b & \quad e_f[e/x] = e'_f & \quad e_a[e/x] = e'_a
\end{align*}
\]

\[
(\lambda y. \, e_b)[e/x] = \lambda y. \, e'_b & \quad (e_f \, e_a)[e/x] = e'_f \, e'_a
\]

Substitution usually treated as a metafunction, not a judgement.
Lambda Calculus (with constants) Operational Semantics

Small-step, left-to-right, call-by-value (CBV) operational semantics:

\[e \rightarrow_{cbv} e' \]

E-AppF

\[\frac{e_f \rightarrow_{cbv} e_f'}{e_f \ e_a \rightarrow_{cbv} e_f' \ e_a} \]

E-AppA

\[\frac{e_a \rightarrow_{cbv} e_a'}{v_f \ e_a \rightarrow_{cbv} v_f \ e_a'} \]

E-Apply

\[\frac{(\lambda x. \ e_b) \ v_a \rightarrow_{cbv} e_b[v_a/x]}{\ e \rightarrow_{cbv} e'} \]

We say that an expression \(e \) is stuck if

\(e \) is not a value, and there is no \(e' \) such that \(e \rightarrow_{cbv} e' \)

We say that an expression \(e \) gets stuck if

\(e \rightarrow^{*}_{cbv} e' \), and \(e' \) is stuck.
Simply-Typed Lambda Calculus (with constants) Type System

Type system to classify (accept or reject) λ-terms.

$$\tau ::= \text{int} \mid \tau \to \tau \quad \Gamma ::= \cdot \mid \Gamma, x : \tau$$

$\Gamma \vdash x : \tau$

C-Hit

$$\frac{\Gamma, x : \tau_x \vdash x : \tau_x}{\Gamma \vdash x : \tau}$$

C-Miss

$$\frac{x \neq y \quad \Gamma' \vdash x \leadsto \tau}{\Gamma', y : \tau_y \vdash x \leadsto \tau}$$

T-Const

$$\frac{\Gamma \vdash c : \text{int}}{\Gamma \vdash x : \tau}$$

T-Var

$$\frac{\Gamma \vdash x : \tau}{\Gamma \vdash @ x : \tau}$$

T-Lam

$$\frac{\Gamma, x : \tau_a \vdash e_b : \tau_r}{\Gamma \vdash \lambda x. e_b : \tau_a \to \tau_r}$$

T-App

$$\frac{\Gamma \vdash e_f : \tau_a \to \tau_r \quad \Gamma \vdash e_a : \tau_a}{\Gamma \vdash e_f e_a : \tau_r}$$
Type Soundness: Main Theorem and Lemmas

A program that type checks does not get stuck.

Theorem (Type Safety): If \(\cdot \vdash e : \tau \) and \(e \rightarrow_{cbv}^{*} e' \), then either \(e' \) is a value or there exists \(e'' \) such that \(e' \rightarrow_{cbv} e'' \).

Follows from two key lemmas:

- Lemma (Progress): If \(\cdot \vdash e' : \tau \), then either \(e' \) is a value or there exists an \(e'' \) such that \(e' \rightarrow_{cbv} e'' \).
- Lemma (Preservation): If \(\cdot \vdash e : \tau \) and \(e \rightarrow_{cbv} e^\dagger \), then \(\cdot \vdash e^\dagger : \tau \).

Proof of Type Safety given Progress and Preservation:

- By induction on (the derivation) \(e \rightarrow_{cbv}^{*} e' \).
 - \(e \rightarrow_{cbv}^{*} e' \equiv e \rightarrow_{cbv}^{*} e \): By Progress.
 - \(e \rightarrow_{cbv}^{*} e' \equiv e \rightarrow_{cbv}^{*} e^\dagger \rightarrow_{cbv} e' \): By Preservation and IH.
Type Soundness: Auxiliary Lemmas

Lemma (Canonical Forms): If \(\cdot \vdash v : \tau \), then
1. if \(\tau = \text{int} \), then \(v = c \) (for some \(c \))
2. if \(\tau = \tau_1 \to \tau_2 \), then \(v = \lambda x. \, e \) (for some \(\lambda x. \, e \))

Lemma (Substitution): If \(\Gamma, \, x : \tau_x \vdash e_1 : \tau \) and \(\Gamma \vdash e_2 : \tau_x \), then \(\Gamma \vdash e_1[e_2/x] : \tau \).

Lemma (Exchange): If \(\Gamma, \, x : \tau_x, \, y : \tau_y \vdash e : \tau \) and \(x \neq y \), then \(\Gamma, \, y : \tau_y, \, x : \tau_x \vdash e : \tau \).

Lemma (Weakening): If \(\Gamma \vdash e : \tau \) and \(x \notin \text{Dom}(\Gamma) \), then \(\Gamma, \, x : \tau_x \vdash e : \tau \).
Lemma dependencies

Safety (evaluation never gets stuck)

- Progress (well-typed not stuck yet)
 - Canonical Forms (primitive reductions apply)

- Preservation (to stay well-typed)
 - Substitution (β-reduction stays well-typed)
 - Weakening (substituting under nested λs well-typed)
 - Exchange (technical point)

Comments:

- Substitution strengthened to open terms for the proof
- When we (and by “we”, I mean “you”) add heaps,
 Preservation will use Weakening directly
Summary

What may seem a weird lemma pile is a powerful recipe:

Soundness: We don’t get stuck because our induction hypothesis (well typedness) holds (Preservation) and stuck terms aren’t well typed (contrapositive of Progress).

Preservation holds by induction on typing because we replace a subterm with another subterm of same type; for the tricky subterm replacement (β-reduction), we use Substitution.

- Substitution must work over open terms and requires Weakening and Exchange.

Progress holds by induction on typing because either a subexpression progresses or we can make a primitive reduction (using Canonical Forms).
Induction on derivations – Another Look

The app cases are really elegant and worth mastering: \(e = ef \, ea \). For Preservation, lemma assumes \(\Gamma \vdash ef \, ea : \tau \) and \(ef \, ea \rightarrow_{cbv} e' \).

Inverting the typing derivation ensures that it has the form:

\[
\begin{align*}
& D_f \\
\hline
\Gamma & \vdash ef : \tau_a \rightarrow \tau \\
& D_a \\
\hline
\Gamma & \vdash ea : \tau_a \\
& \hline
\Gamma & \vdash ef \, ea : \tau
\end{align*}
\]

One subcase: If \(ef \, ea \rightarrow_{cbv} e'_f \, ea \), then inverting that derivation ensures:

\[
\begin{align*}
& D_s \\
\hline
ef & \rightarrow_{cbv} e'_f \\
\hline
ef \, ea & \rightarrow_{cbv} e'_f \, ea
\end{align*}
\]
The inductive hypothesis (applied to $\Gamma \vdash e_f : \tau_a \rightarrow \tau$ and $e_f \rightarrow_{cbv} e'_f$) gives a derivation of this form:

$$
\frac{\mathcal{D}_{f'}}{
\Gamma \vdash e'_f : \tau_a \rightarrow \tau
}$$

Therefore, a derivation of this form exists:

$$
\frac{\mathcal{D}_{f'}}{
\Gamma \vdash e'_f : \tau_a \rightarrow \tau
} \quad \frac{\mathcal{D}_a}{
\Gamma \vdash e_a : \tau_a
} \quad \frac{}{
\Gamma \vdash e'_f e_a : \tau
}$$

(The app case of the Substitution Lemma is similar but we apply induction twice to get the new derivation.)