Type Safety of STLC (with constants)

Syntax

\[
e ::= c \mid x \mid \lambda x. e \mid e e
\]
\[
v ::= c \mid \lambda x. e
\]

Work with terms “up to renaming of bound variables” (“up to alpha-conversion”).

Substitution

\[
FV(c) = \{\}
\]
\[
FV(x) = \{x\}
\]
\[
FV(e_f e_a) = FV(e_f) \cup FV(e_a)
\]
\[
FV(\lambda x. e_b) = FV(e_b) \setminus \{x\}
\]

\[e_1[e_2/z] = e_3\]

\[
\frac{c[z/x]}{c[e/z] = e} \quad \frac{x = z}{x[e/z] = e} \quad \frac{x \neq z}{x[e/z] = x}
\]
\[
\frac{x \neq z \quad x \notin FV(e) \quad e'[e/z] = e'}{e[x/z] = e'} \quad \frac{e'[e/z] = e'}{e[e_a][e/z] = e'[e_a][e/z] = e'[e_a]}
\]

Substitution usually treated as a metafunction, not a judgement.

Operational Semantics

Small-step, left-to-right, call-by-value (CBV) operational semantics:

\[
e \rightarrow_{cbv} e'
\]

\[
\frac{e_f \rightarrow_{cbv} e'_f}{e_f e_a \rightarrow_{cbv} e'_f e_a} \quad \frac{e_a \rightarrow_{cbv} e'_a}{e_f e_a \rightarrow_{cbv} e'_f e'_a} \quad \frac{(\lambda x. e_b) v_a \rightarrow_{cbv} e_b[v_a/x]}{E\text{-App}}
\]

\[
\frac{e \rightarrow^*_{cbv} e}{e \rightarrow^*_{cbv} e} \quad \frac{e \rightarrow_{cbv} e' \quad e' \rightarrow^*_{cbv} e'}{e \rightarrow^*_{cbv} e'} \quad \frac{e \rightarrow_{cbv} e' \quad e' \rightarrow^*_{cbv} e'}{e \rightarrow^*_{cbv} e'} \quad \frac{E^*\text{-Step}}{e \rightarrow^*_{cbv} e}
\]

We say that an expression \(e\) is stuck if \(e\) is not a value, and there is no \(e'\) such that \(e \rightarrow_{cbv} e'\)

We say that an expression \(e\) gets stuck if \(e \rightarrow^*_{cbv} e'\), and \(e'\) is stuck.
Type System

Type system to classify (accept or reject) λ-terms.

$$\tau ::= \text{int} \mid \tau \rightarrow \tau$$

$$\Gamma ::= \cdot \mid \Gamma, x : \tau$$

Theorem (Type Safety):
If $\cdot \vdash e : \tau$ and $e \rightarrow^*_{cbv} e'$,
then either e' is a value or there exists e'' such that $e' \rightarrow_{cbv} e''$.

- **Lemma (Progress):**
 If $\cdot \vdash e' : \tau$, then either e' is a value or there exists an e'' such that $e \rightarrow_{cbv} e''$.

 - **Lemma (Canonical Forms; int):**
 If $\cdot \vdash v : \text{int}$, then $v = c$ (for some c).

 - **Lemma (Canonical Forms; $\tau_a \rightarrow \tau_r$):**
 If $\cdot \vdash v : \tau_a \rightarrow \tau_r$, then $v = \lambda x. e_b$ (for some $\lambda x. e_b$)

- **Lemma (Preservation):**
 If $\cdot \vdash e : \tau$ and $e \rightarrow_{cbv} e'$, then $\cdot \vdash e' : \tau$.

- **Lemma (Substitution):**
 If $\Gamma, z : \tau_z \vdash e_1 : \tau$ and $\Gamma \vdash e_2 : \tau_z$, then $\Gamma \vdash e_1[e_2/z] : \tau$.

 * **Lemma (Exchange):**
 If $\Gamma, x : \tau_x, y : \tau_y \vdash e : \tau$ and $x \neq y$, then $\Gamma, y : \tau_y, x : \tau_x \vdash e : \tau$.

 * **Lemma (Weakening):**
 If $\Gamma \vdash e : \tau$ and $x \notin \text{Dom}(\Gamma)$, then $\Gamma, x : \tau_x \vdash e : \tau$.

Type Safety Theorems/Lemmas
Type Safety Proof

A program that type checks does not get stuck.

Theorem (Type Safety):
If $\cdot \vdash e : \tau$ and $e \rightarrow_{\text{cbv}}^* e'$, then either e' is a value or there exists e'' such that $e' \rightarrow_{\text{cbv}} e''$.

Comments: The Type Safety Theorem follows as a simple corollary to the Progress and Preservation Lemmas stated and proven below.

Proof (assuming Preservation and Progress):
By structural induction on (the derivation of) $e \rightarrow_{\text{cbv}}^* e'$.

- $e \rightarrow_{\text{cbv}}^* e' \equiv e \rightarrow_{\text{cbv}}^* e$: E-ZERO
 Therefore, $e' = e$.
 We must show that either e' is a value or there exists e'' such that $e' \rightarrow_{\text{cbv}} e''$.
 From $\cdot \vdash e : \tau$ and $e = e'$, we have $\cdot \vdash e' : \tau$.
 By Progress applied to $\cdot \vdash e' : \tau$, we have either e' is a value or there exists e'' such that $e' \rightarrow_{\text{cbv}} e''$.

- $e \rightarrow_{\text{cbv}}^* e' \equiv e \rightarrow_{\text{cbv}}^* e \rightarrow_{\text{cbv}}^* e'$: E-STEP
 Therefore, we have $e \rightarrow_{\text{cbv}} e'$ and $e \rightarrow_{\text{cbv}}^* e'$.
 We must show that either e' is a value or there exists e'' such that $e' \rightarrow_{\text{cbv}} e''$.
 By Preservation applied to $\cdot \vdash e : \tau$ and $e \rightarrow_{\text{cbv}} e'$, we have $\cdot \vdash e' : \tau$.
 By the induction hypothesis applied to $e \rightarrow_{\text{cbv}}^* e'$ with $\cdot \vdash e' : \tau$,
 we have either e' is a value or there exists e'' such that $e' \rightarrow_{\text{cbv}} e''$.
Lemma (Progress): If $\vdash e : \tau$, then either e is a value or there exists an e' such that $e \rightarrow_{cbv} e'$.

Proof (assuming Canonical Forms):
By induction on (the derivation of) $\vdash e : \tau$.

- **T-CONST** concludes the derivation of $\vdash e : \tau$:
 Therefore, $e = c$ and $\tau = \text{int}$.
 We must show that either e is a value or there exists an e' such that $e \rightarrow_{cbv} e'$.
 We have $e = c$ is a value.

- **T-VAR** concludes the derivation of $\vdash e : \tau$:
 Therefore, $e = x$ and $\vdash \notin x : \tau$.
 We must show that either e is a value or there exists an e' such that $e \rightarrow_{cbv} e'$.
 But, $\vdash \notin x : \tau$ is contradictory; there is no derivation of such a judgement.
 Therefore, vacuously, either e is a value or there exists an e' such that $e \rightarrow_{cbv} e'$.

- **T-LAM** concludes the derivation of $\vdash e : \tau$:
 Therefore, $\vdash \lambda x. e : \tau$, $\vdash e : \tau_a$, and $\tau = \tau_a \rightarrow \tau_r$.
 We must show that either e is a value or there exists an e' such that $e \rightarrow_{cbv} e'$.
 We have $e = \lambda x. e_b$ is a value.

- **T-APP** concludes the derivation of $\vdash e : \tau$:
 Therefore, $\vdash e_f : \tau_a \rightarrow \tau$, $\vdash e_a : \tau_a$, $e = e_f e_a$, and $\tau = \tau_r$.
 We must show that either e is a value or there exists an e' such that $e \rightarrow_{cbv} e'$.
 By the induction hypothesis applied to $\vdash e_f : \tau_a \rightarrow \tau_r$, we have either
 - e_f is a value:
 Therefore, $e_f = v_f$.
 By the induction hypothesis applied to $\vdash e_a : \tau_a$, we have either
 * e_a is a value:
 Therefore, $e_a = v_a$.
 From $\vdash e_f : \tau_a \rightarrow \tau_r$ and $e_f = v_f$, we have $\vdash v_f : \tau_a \rightarrow \tau_r$.
 By Canonical Forms applied to $\vdash v_f : \tau_a \rightarrow \tau_r$, we have $v_f = \lambda x. e_b$.
 From E-APPLY, we can construct the derivation $(\lambda x. e_b) v_a \rightarrow_{cbv} e_b[v_a/x]$.
 Therefore, we have $(\lambda x. e_b) v_a \rightarrow_{cbv} e_b[v_a/x]$.
 Take $e' = e_b[v_a/x]$.
 From $(\lambda x. e_b) v_a \rightarrow_{cbv} e_b[v_a/x]$, $e = e_f e_a$, $e_f = v_f$, $e_a = v_a$, $v_f = \lambda x. e_b$, and $e' = e_b[v_a/x]$, we have $e \rightarrow_{cbv} e'$.
 * there exists an e'_a such that $e_a \rightarrow_{cbv} e'_a$:
 From E-APPF and $e_a \rightarrow_{cbv} e'_a$, we can construct the derivation $e_a \rightarrow_{cbv} e'_a$.
 Therefore, we have $v_f e_a \rightarrow_{cbv} v_f e'_a$.
 Take $e' = v_f e'_a$.
 From $v_f e_a \rightarrow_{cbv} v_f e'_a$, $e = e_f e_a$, $v_f = e_f$, and $e' = v_f e'_a$, we have $e \rightarrow_{cbv} e'$.
 - there exists an e'_f such that $e_f \rightarrow_{cbv} e'_f$:
 From E-APPF and $e_f \rightarrow_{cbv} e'_f$, we can construct the derivation $e_f \rightarrow_{cbv} e'_f$.
 Therefore, we have $e_f e_a \rightarrow_{cbv} e'_f e_a$.
 Take $e' = e'_f e_a$.
 From $e_f e_a \rightarrow_{cbv} e'_f e_a$, $e = e_f e_a$, and $e' = e'_f e_a$, we have $e \rightarrow_{cbv} e'$.

4
Lemma (Canonical Forms): If \(\cdot \vdash v : \tau \), then

1. If \(\tau = \text{int} \), then \(v = c \) (for some \(c \))

2. If \(\tau = \tau_a \rightarrow \tau_r \), then \(v = \lambda x. e_b \) (for some \(\lambda x. e_b \))

Proof:
(By inspection of the typing rules.)

1. \(\tau = \text{int} \):

 By assumption, \(\cdot \vdash v : \text{int} \).

 Only T-CONST can derive \(\cdot \vdash v : \text{int} \); therefore, \(v = c \) (for some \(c \)).

2. \(\tau = \tau_a \rightarrow \tau_r \):

 By assumption, \(\cdot \vdash v : \tau_a \rightarrow \tau_r \).

 Only T-LAM can derive \(\cdot \vdash v : \tau_a \rightarrow \tau_r \); therefore, \(v = \lambda x. e_b \) (for some \(\lambda x. e_b \)).
Lemma (Preservation): If \(\vdash e : \tau \) and \(e \rightarrow_{cbv} e' \), then \(\vdash e' : \tau \).

Proof (assuming Substitution):
By induction on (the derivation of) \(\vdash e : \tau \).

- **T-CONST** concludes the derivation of \(\vdash e : \tau \):
 Therefore, \(e = c \) and \(\tau = \text{int} \).
 From \(e \rightarrow_{cbv} e' \) and \(e = c \), we have \(c \rightarrow_{cbv} e' \).
 But \(c \rightarrow_{cbv} e' \) is contradictory; there is no derivation of such a judgement.
 Therefore, vacuously, \(\vdash e' : \tau \).

- **T-VAR** concludes the derivation of \(\vdash e : \tau \):
 Therefore, \(e = x \) and \(\tau \in x \sim \tau \).
 From \(e \rightarrow_{cbv} e' \) and \(e = x \), we have \(x \rightarrow_{cbv} e' \).
 But \(x \rightarrow_{cbv} e' \) is contradictory; there is no derivation of such a judgement.
 Therefore, vacuously, \(\vdash e' : \tau \).

- **T-LAM** concludes the derivation of \(\vdash e : \tau \):
 Therefore, \(\vdash \lambda x. e : \tau \), \(\vdash e : \tau_a \), \(e = \lambda x. e_b \), and \(\tau = \tau_a \rightarrow \tau_r \).
 From \(e \rightarrow_{cbv} e' \) and \(e = \lambda x. e_b \), we have \(\lambda x. e_b \rightarrow_{cbv} e' \).
 But \(\lambda x. e_b \rightarrow_{cbv} e' \) is contradictory; there is no derivation of such a judgement.
 Therefore, vacuously, \(\vdash e' : \tau \).

- **T-APP** concludes the derivation of \(\vdash e : \tau \):
 Therefore, \(\vdash e f : \tau_a \rightarrow \tau_r \), \(\vdash e_a : \tau_a \), \(e = ef \) \(e_a \), and \(\tau = \tau_r \).
 From \(e \rightarrow_{cbv} e' \) and \(e = ef \) \(e_a \), we have \(ef \) \(e_a \rightarrow_{cbv} e' \).
 By cases on (the derivation of) \(ef \) \(e_a \rightarrow_{cbv} e' \).
 - **E-APPLY** concludes the derivation of \(ef \) \(e_a \rightarrow_{cbv} e' \):
 Therefore, \(ef = \lambda x. e_b \), \(e_a = v_a \), and \(e' = e_b[v_a/x] \).
 From \(e' = e_b[v_a/x] \) and \(e_a = v_a \), we have \(e' = e_b[e_a/x] \).
 From \(\vdash ef : \tau_a \rightarrow \tau_r \) and \(\vdash e : \tau \), we have \(\vdash \lambda x. e_b : \tau_a \rightarrow \tau_r \).
 By inversion of \(\vdash \lambda x. e_b : \tau_a \rightarrow \tau_r \), we have \(\vdash x : \tau_a \vdash e_b : \tau_r \).
 By **Substitution** applied to \(\vdash x : \tau_a \vdash e_b : \tau_r \) and \(\vdash e_a : \tau_a \), we have \(\vdash e_b[e_a/x] : \tau_r \).
 From \(\vdash e_b[e_a/x] : \tau_r \), \(e' = e_b[e_a/x] \), and \(\tau = \tau_r \), we have \(\vdash e' : \tau \).
 - **E-APPF** concludes the derivation of \(ef \) \(e_a \rightarrow_{cbv} e' \):
 Therefore, \(ef \rightarrow_{cbv} e'_f \) and \(e' = e'_f \) \(e_a \).
 By the induction hypothesis applied to \(\vdash ef : \tau_a \rightarrow \tau_r \) and \(ef \rightarrow_{cbv} e'_f \), we have \(\vdash e'_f : \tau_a \rightarrow \tau_r \).
 From **T-APP**, \(\vdash e'_f : \tau_a \rightarrow \tau_r \) and \(\vdash e_a : \tau_a \),
 we can construct the derivation \(\vdash e'_f : \tau_a \rightarrow \tau_r \ldots \vdash e_a : \tau_a \);
 therefore, we have \(\vdash e'_f \) \(e_a : \tau_r \).
 From \(\vdash e'_f \) \(e_a : \tau_r \), \(e' = e'_f \) \(e_a \), and \(\tau = \tau_r \), we have \(\vdash e' : \tau \).
 - **E-APPA** concludes the derivation of \(ef \) \(e_a \rightarrow_{cbv} e' \):
 Therefore, \(e_a \rightarrow_{cbv} e'_a \) and \(e_f = v_f \), \(e'_a = v_f e'_a \).
 From \(e' = v_f e'_a \) and \(e_f = v_f \), we have \(e' = e_f e'_a \).
 By the induction hypothesis applied to \(e_a \rightarrow_{cbv} e'_a \) and \(\vdash e_a : \tau_a \), we have \(\vdash e'_a : \tau_a \).
 From **T-APP**, \(\vdash e_f : \tau_a \rightarrow \tau_r \) and \(\vdash e'_a : \tau_a \),
 we can construct the derivation \(\vdash e_f : \tau_a \rightarrow \tau_r \ldots \vdash e'_a : \tau_a \);
 therefore, we have \(\vdash e_f e'_a : \tau_r \).
 From \(\vdash e_f e'_a : \tau_r \), \(e' = e_f e'_a \), and \(\tau = \tau_r \), we have \(\vdash e' : \tau \).
Lemma (Substitution): If $\Gamma, z : \tau_z \vdash e_1 : \tau$ and $\Gamma \vdash e_2 : \tau_z$, then $\Gamma \vdash e_1[e_2/z] : \tau$.

Comments: The proof of the Preservation Lemma only requires a Substitution Lemma where $\Gamma = \cdot$. However, proving the Substitution Lemma itself requires the stronger induction hypothesis.

Proof (assuming Exchange and Weakening):
By structural induction on e_1.

- $e_1 \equiv c$:
 By assumption, we have $\Gamma, z : \tau_z \vdash e_1 : \tau$ and $\Gamma \vdash e_2 : \tau_z$.
 We must show that $\Gamma \vdash e_1[e_2/z] : \tau$.
 From $\Gamma, z : \tau_z \vdash e_1 : \tau$ and $e_1 = c$, we have $\Gamma, z : \tau_z \vdash c : \tau$.
 By inversion of $\Gamma, z : \tau_z \vdash c : \tau$, we have $\tau = \text{int}$.
 From $T\text{-Const}$, we can construct the derivation $\Gamma \vdash c : \text{int}$;
 therefore, we have $\Gamma \vdash c : \text{int}$.
 By definition of substitution, we have $c[e_2/z] = c$.
 From $\Gamma \vdash c : \text{int}$, $e_1 = c$, $\tau = \text{int}$, and $c[e_2/z] = c$, we have $\Gamma \vdash e_1[e_2/z] : \tau$.

- $e_1 \equiv x$:
 By assumption, we have $\Gamma, z : \tau_z \vdash e_1 : \tau$ and $\Gamma \vdash e_2 : \tau_z$.
 We must show that $\Gamma \vdash e_1[e_2/z] : \tau$.
 From $\Gamma, z : \tau_z \vdash e_1 : \tau$ and $e_1 = x$, we have $\Gamma, z : \tau_z \vdash x : \tau$.
 By inversion of $\Gamma, z : \tau_z \vdash x : \tau$, we have $\Gamma, z : \tau_z \vdash x \sim \tau$.
 By cases on (the derivation of) $\Gamma, z : \tau_z \vdash x \sim \tau$.
 - C-Hit concludes the derivation of $\Gamma, z : \tau_z \vdash x \sim \tau$:
 Therefore, $x = z$ and $\tau = \tau_z$.
 By definition of substitution, we have $z[e_2/z] = e_2$.
 From $\Gamma \vdash e_2 : \tau_z$, $e_1 = x$, $x = z$, $\tau = \tau_z$, and $z[e_2/z] = e_2$, we have $\Gamma \vdash e_1[e_2/z] : \tau$.
 - C-Miss concludes the derivation of $\Gamma, z : \tau_z \vdash x \sim \tau$:
 Therefore, $x \neq z$ and $\Gamma \vdash x \sim \tau$.
 From $T\text{-Var}$, we can construct the derivation $\Gamma \vdash x \sim \tau$;
 therefore, we have $\Gamma \vdash x : \tau$.
 By definition of substitution and $x \neq z$, we have $x[e_2/z] = x$.
 From $\Gamma \vdash x : \tau$, $e_1 = x$, and $x[e_2/z] = x$, we have $\Gamma \vdash e_1[e_2/z] : \tau$.

(continued)
• $e_1 \equiv \lambda x. \ e_b$:

By "up to α-conversion", we ensure $x \neq z$ and $x \notin \text{Dom}(\Gamma)$.

By assumption, we have $\Gamma, z : \tau_z \vdash e_1 : \tau$ and $\Gamma \vdash e_2 : \tau_z$.

We must show that $\Gamma \vdash e_1[e_2/z] : \tau$.

From $\Gamma, z : \tau_z \vdash e_1 : \tau$ and $e_1 = \lambda x. \ e_b$, we have $\Gamma, z : \tau_z \vdash \lambda x. \ e_b : \tau$.

By inversion of $\Gamma, z : \tau_z \vdash x : \tau_a, e_b : \tau$, we have $\Gamma, z : \tau_z, x : \tau_a \vdash e_b : \tau$, and $\tau = \tau_a \rightarrow \tau_r$.

By Exchange applied to $\Gamma, z : \tau_z, x : \tau_a \vdash e_b : \tau_r$ and $x \neq z$, we have $\Gamma, x : \tau_a, z : \tau_z \vdash e_b : \tau_r$.

By Weakening applied to $\Gamma \vdash e_2 : \tau_z$ and $x \notin \text{Dom}(\Gamma)$, we have $\Gamma, x : \tau_a \vdash e_2 : \tau_z$.

By the induction hypothesis applied to e_b with $\Gamma, x : \tau_a, z : \tau_z \vdash e_b : \tau_r$ and $\Gamma, x : \tau_a \vdash e_2 : \tau_z$, we have $\Gamma, x : \tau_a \vdash e_b[e_2/z] : \tau_r$.

From T-LAM and $\Gamma, x : \tau_a \vdash e_b[e_2/z] : \tau_r$, we can construct the derivation $\Gamma, x : \tau_a \vdash e_b[e_2/z] : \tau_r$.

therefore, we have $\Gamma \vdash \lambda x. \ e_b[e_2/z] : \tau_a \rightarrow \tau_r$.

From $x \notin \text{Dom}(\Gamma)$ and $\Gamma \vdash e_2 : \tau_z$, we have $x \notin \text{FV}(e_2)$.

By definition of substitution and $x \neq z$ and $x \notin \text{FV}(e_2)$, we have $(\lambda x. \ e_b)[e_2/z] = \lambda x. \ e_b[e_2/z]$.

From $\Gamma \vdash \lambda x. \ e_b[e_2/z] : \tau_a \rightarrow \tau_r, e_1 = \lambda x. \ e_b, \tau = \tau_a \rightarrow \tau_r$, and $(\lambda x. \ e_b)[e_2/z] = \lambda x. \ e_b[e_2/z]$, we have $\Gamma \vdash e_1[e_2/z] : \tau$.

• $e_1 \equiv e_f \ e_a$:

By assumption, we have $\Gamma, z : \tau_z \vdash e_1 : \tau$ and $\Gamma \vdash e_2 : \tau_z$.

We must show that $\Gamma \vdash e_1[e_2/z] : \tau$.

From $\Gamma, z : \tau_z \vdash e_1 : \tau$ and $e_1 = e_f \ e_a$, we have $\Gamma, z : \tau_z \vdash e_f \ e_a : \tau$.

By inversion of $\Gamma, z : \tau_z \vdash e_f \ e_a : \tau$, we have $\Gamma, z : \tau_z \vdash e_f : \tau_a \rightarrow \tau_r, \Gamma, z : \tau_z \vdash e_a : \tau_a$, and $\tau = \tau_r$.

By the induction hypothesis applied to e_f with $\Gamma, z : \tau_z \vdash e_f : \tau_a \rightarrow \tau_r$ and $\Gamma \vdash e_2 : \tau_z$, we have $\Gamma \vdash e_f[e_2/z] : \tau_a \rightarrow \tau_r$.

By the induction hypothesis applied to e_a with $\Gamma, z : \tau_z \vdash e_a : \tau_a$ and $\Gamma \vdash e_2 : \tau_z$, we have $\Gamma \vdash e_a[e_2/z] : \tau_a$.

From T-APP, $\Gamma \vdash e_f[e_2/z] : \tau_a \rightarrow \tau_r$, and $\Gamma \vdash e_a[e_2/z] : \tau_a$.

we can construct the derivation $\Gamma \vdash e_f[e_2/z] : \tau_a \rightarrow \tau_r, \Gamma \vdash e_a[e_2/z] : \tau_a$.

therefore, we have $\Gamma \vdash e_f[e_2/z] \ e_a[e_2/z] : \tau_r$.

By definition of substitution, we have $(e_f \ e_a)[e_2/z] = e_f[e_2/z] \ e_a[e_2/z]$.

From $\Gamma \vdash e_f[e_2/z] \ e_a[e_2/z] : \tau_r, e_1 = e_f \ e_a, \tau = \tau_r$, and $(e_f \ e_a)[e_2/z] = e_f[e_2/z] \ e_a[e_2/z]$, we have $\Gamma \vdash e_1[e_2/z] : \tau$.

Lemma (Exchange): If $\Gamma, x : \tau_x, y : \tau_y \vdash e : \tau$ and $x \neq y$, then $\Gamma, y : \tau_y, x : \tau_x \vdash e : \tau$.

Comments: The Exchange Lemma is a technical lemma, whose proof is omitted but is not difficult. (The proof is by induction on the structure of e.)

Lemma (Weakening): If $\Gamma \vdash e : \tau$ and $x \notin \text{Dom}(\Gamma)$, then $\Gamma, x : \tau_x \vdash e : \tau$.

Comments: The Weakening Lemma is a technical lemma, whose proof is omitted but is not difficult. (The proof is by induction on the structure of e.)