Programming Language Theory

Simply-Typed Lambda Calculus
Looking back, looking forward

Finished a number of major topics:

- **IMP**, modeling assignment and local control flow
- Lambda Calculus, modeling scope and functions
- Formalizing abstract syntax and operational semantics

Major new topic: Types and Type Systems!

- Continue using (CBV) Lambda Calculus as our core model
- But will soon enrich with other common primitives
Types and Type Systems!

Worthy of several lectures.

This lecture:

- Motivation for type systems
- What a type system is designed to do and to not do
 - Definitions of “stuckness”, “soundness”, “completeness”, etc.
- The Simply-Typed Lambda Calculus
 - A basic and natural type system
 - A starting point for more expressive type systems later

Next lecture:

- Prove that the Simply-Typed Lambda Calculus is sound.
Review: Lambda Calculus Syntax

\[e ::= \lambda x. e \mid x \mid e e \]
\[v ::= \lambda x. e \]

Work with terms “up to renaming of bound variables” (“up to alpha-conversion”).
Review: Lambda Calculus Substitution

Work with terms “up to renaming of bound variables” (“up to alpha-conversion”).

\[
\begin{align*}
FV(x) &= \{x\} \\
FV(e_1 e_2) &= FV(e_1) \cup FV(e_2) \\
FV(\lambda x. e) &= FV(e) \setminus \{x\}
\end{align*}
\]

\[e_1[e_2/x] = e_3\]

\[
\begin{align*}
x[e/x] &= e \\
y[e/x] &= y \\
e_1[e/x] &= e'_1 \\
e_2[e/x] &= e'_2 \\
(e_1 e_2)[e/x] &= e'_1 e'_2
\end{align*}
\]

\[
\begin{align*}
y \neq x \\
y \not\in FV(e) \\
e_1[e/x] &= e'_1 \\
(\lambda y. e_1)[e/x] &= \lambda y. e'_1
\end{align*}
\]

Substitution usually treated as a metafunction, not a judgement.
Review: Lambda Calculus Semantics

Small-step, *call-by-value (CBV)*, left-to-right operational semantics:

\[e \rightarrow_{cbv} e' \]

\[
\begin{align*}
 e_1 \rightarrow_{cbv} e'_1 & \quad \frac{e_1 \rightarrow_{cbv} e'_1}{e_1 \ e_2 \rightarrow_{cbv} e'_1 \ e_2} \\
 e_2 \rightarrow_{cbv} e'_2 & \quad \frac{e_2 \rightarrow_{cbv} e'_2}{v_1 \ e_2 \rightarrow_{cbv} v_1 \ e'_2} \\
 (\lambda x. \ e_1) \ v_2 & \rightarrow_{cbv} e_1[v_2/x]
\end{align*}
\]

Small-step, *call-by-name (CBN)* operational semantics:

\[e \rightarrow_{cbn} e' \]

\[
\begin{align*}
 (\lambda x. \ e_1) \ e_2 & \rightarrow_{cbn} e_1[e_2/x] \\
 e_1 \rightarrow_{cbn} e'_1 & \quad \frac{e_1 \rightarrow_{cbn} e'_1}{e_1 \ e_2 \rightarrow_{cbn} e'_1 \ e_2}
\end{align*}
\]
Review: Lambda Calculus Semantics

Large-step, \textit{call-by-value (CBV)} operational semantics:

\[
\begin{align*}
 e & \Downarrow_{\text{cbv}} v' \\
 \lambda x. e & \Downarrow_{\text{cbv}} \lambda x. e \\
 \lambda x. e_1 & \Downarrow_{\text{cbv}} \lambda x. e_1' \\
 e_2 & \Downarrow_{\text{cbv}} v_2 \\
 e_1' [v_2 / x] & \Downarrow_{\text{cbv}} v_3 \\
 e_1 e_2 & \Downarrow_{\text{cbv}} v_3
\end{align*}
\]

Large-step, \textit{call-by-name (CBN)} operational semantics:

\[
\begin{align*}
 e & \Downarrow_{\text{cbn}} v' \\
 \lambda x. e & \Downarrow_{\text{cbn}} \lambda x. e \\
 \lambda x. e_1 & \Downarrow_{\text{cbn}} \lambda x. e_1' \\
 e_2 & \Downarrow_{\text{cbn}} v_2 \\
 e_1' [e_2 / x] & \Downarrow_{\text{cbn}} v_3 \\
 e_1 e_2 & \Downarrow_{\text{cbn}} v_3
\end{align*}
\]
Introduction to Types

Naïve thought: More powerful PLs are *always* better

- Be Turing Complete
- Have really flexible features (lambda, continuations, . . .)
- Have conveniences to keep programs short
Introduction to Types

Naïve thought: More powerful PLs are always better

- Be Turing Complete
- Have really flexible features (lambda, continuations, …)
- Have conveniences to keep programs short

By this metric, types are a step backward

- Whole point is to allow fewer programs
 - (by rejecting some “bad” programs)
- A “filter” between abstract syntax and compiler/interpreter
 - We don’t run all possible programs.

Why are types a great idea?

- If types are a great idea,
 then they must help with other desirable properties of PLs
Why types?

1. Catch “simple” mistakes early (at compile-time)
 - Example: “if” applied to “mkpair”
 - Even if some too-clever programmer meant to do it
 - Even though decidable type systems must be conservative

2. (Safety) Prevent getting stuck (e.g., $x \ e$)
 - Ensure execution never does a “wrong/bad/meaningless” operation
 - But “wrong/bad/meaningless” depends on the semantics
 - Each PL typically makes some things type errors (compile-time errors) and other things run-time errors

3. Enforce encapsulation (an abstract type)
 - Clients can’t break invariants
 - Clients can’t assume an implementation
 - requires safety, meaning no “wrong/bad/meaningless” operations that corrupt run-time (e.g., C/C++)
 - Can enforce encapsulation without static types (e.g., contracts), but types are a particularly nice way

Continued…
Why types? (continued)

4. Assuming well-typedness allows faster implementations
 ▶ Smaller interfaces enable optimizations
 ▶ Don’t have to check for “wrong/bad/meaningless” states
 ▶ Orthogonal to safety (e.g., C/C++)

5. Syntactic overloading
 ▶ Have symbol lookup depend on operands’ types
 ▶ Only modestly interesting semantically
 ▶ Late binding (lookup via run-time types) more interesting

6. Detect other errors via extensions
 ▶ Often via a “type-and-effect” system
 ▶ Uncaught exceptions, IO performed, tainted data, dangling pointers, data races, non-termination, . . .
 ▶ Deep similarities in these analyses suggest that type systems are a good way to think-about/define/prove what you’re checking.

We’ll really focus on (1), (2), and (3) (plus (6) if there is time).
What is a type system?

Er, uh, you know it when you see it. Some clues:

- A decidable (?) judgement for classifying (accepting/rejecting) programs
 - (e.g., $e_1 + e_2$ has type int if e_1 and e_2 have type int (else it has no type))
- A sound (?) abstraction of computation
 - (e.g., if $e_1 + e_2$ has type int, then evaluation yields an int (with caveats!))
- Fairly syntax directed
 - (non-e.g., e terminates within 100 steps)
- Particularly fuzzy distinctions with abstract interpretation
 - Often a more natural framework for flow-sensitive properties
 - Types often more natural for higher-order programs

This is a CS-centric, PL-centric view.

Foundational type theory has more rigorous answers.

- Type systems are proof systems for logics.
- We’ll (briefly) look at the connection in a later lecture.
Plan for next few weeks

- Simply-Typed Lambda Calculus (STLC)
- (Syntactic) Type Soundness (i.e., safety)
- Extensions (pairs, sums, lists, recursion)
- Digression on evaluation contexts and continuations

break for Midterm Exam (Wednesday, October 21)

- Digression on the Curry-Howard isomorphism
- Subtyping
- Polymorphic types (generics), Recursive types, Abstract types
- Effect systems (?)

Homework(s): Adding back mutation
Omitted: Type inference
Adding constants

Enrich the Lambda Calculus with integer constants:

\[
\begin{align*}
e & ::= \lambda x. e \mid x \mid e \; e \mid c \\
v & ::= \lambda x. e \mid c
\end{align*}
\]

- Not strictly necessary, but will make types seem more natural.
- No need for new operational-semantics rules (since constants are values).
- We could add $+$, \ast, and other primitives
 - Would need new operational-semantics rules (e.g., 3 small-step rules for $+$).
- Alternatively, just parameterize “programs” by them: $\lambda \text{plus}. \; \lambda \text{times}. \; e$.
 - Like top-level Basis Library functions in Standard ML.
 - A great way to keep language definitions small.
Stuck

Key issue: can a program “get stuck” (reach a “wrong/bad/meaningless” state)?

Definition: \(e \) is stuck if
- \(e \) is not a value
- and there is no \(e' \) such that \(e \xrightarrow{cbv} e' \)

Definition \(e \) can get stuck if there exists an \(e' \) such that
- \(e \xrightarrow{*} cbv e' \)
- \(e' \) is stuck

(In a deterministic language, \(e \) gets stuck.)
Stuck

Key issue: can a program “get stuck” (reach a “wrong/bad/meaningless” state)?

Definition: e is stuck if

- e is not a value
- and there is no e' such that $e \rightarrow_{cbv} e'$

Definition e can get stuck if there exists an e' such that

- $e \rightarrow^{*}_{cbv} e'$
- e' is stuck

(In a deterministic language, e gets stuck.)

Note: “is/gets stuck” depends on the operational semantics. This is inherent in the definitions above (we mention $e \rightarrow_{cbv} e'$).
LC+C Stuck

For the Lambda Calculus with Constants, what are the stuck expressions?

Note: Explicitly defining the stuck states is unusual.

\[e ::= \lambda x. e \mid x \mid e \, e \mid c \]

\[v ::= \lambda x. e \mid c \]

\[e \rightarrow_{\text{cbv}} e' \]

\[
\frac{e_1 \rightarrow_{\text{cbv}} e'_1}{e_1 \, e_2 \rightarrow_{\text{cbv}} e'_1 \, e_2}
\]

\[
\frac{e_2 \rightarrow_{\text{cbv}} e'_2}{v_1 \, e_2 \rightarrow_{\text{cbv}} v_1 \, e'_2}
\]

\[
(\lambda x. e_1) \, v_2 \rightarrow_{\text{cbv}} e_1[v_2/x]
\]

(Hint: The full set of stuck expressions is recursively defined.)

\[S ::= \]
LC+C Stuck

For the Lambda Calculus with Constants, what are the stuck expressions?

Note: Explicitly defining the stuck states is unusual.

\[e ::= \lambda x. \ e \mid x \mid e \ e \mid c \]

\[v ::= \lambda x. \ e \mid c \]

\[e \rightarrow_{cbv} e' \]

\[\begin{align*}
\frac{e_1 \rightarrow_{cbv} e'_1}{e_1 \ e_2 \rightarrow_{cbv} e'_1 \ e_2} & \quad \frac{e_2 \rightarrow_{cbv} e'_2}{v_1 \ e_2 \rightarrow_{cbv} v_1 \ e'_2} & \quad (\lambda x. \ e_1) \ v_2 \rightarrow_{cbv} e_1[v_2/x]
\end{align*} \]

(Hint: The full set of stuck expressions is recursively defined.)

\[S ::= x \mid c \ v \mid S \ e \mid v \ S \]
Stuckness

Most people don’t realize that “safety” depends on the semantics:

- We can add “cheat” rules to “avoid” being stuck.

\[c \ v \rightarrow_{cbv} 0 \quad x \ v \rightarrow_{cbv} 13 \]

- Unsafe languages don’t “get stuck”, they just “do anything”.

\[H;e \Downarrow c \quad H(x) = \langle c_0, \ldots, c_{n-1} \rangle \quad (0 > c \lor c \geq n) \]

\[H; x[e] := e' \rightarrow H'; s' \]

- \(H' \) might be the heap that describes the state “computer on fire”.

Matthew Fluet
Programming Language Theory
Lecture 09 16
Soundness and Completeness

A *type system* is a judgement for classifying (accepting or rejecting) programs.
- “accept” program if some complete derivation gives the program a type
- “reject” otherwise (if no complete derivation gives the program a type)

A *sound* type system never accepts a program that can get stuck.
- If the type system accepts a program, then it does not get stuck.
- If a program gets stuck, then the type system rejects it.
- No false negatives.

A *complete* type system never rejects a program that can’t get stuck.
- If a program doesn’t get stuck, then the type system accepts it.
- If the type system rejects a program, then it gets stuck.
- No false positives.
Soundness and Completeness

A type system is a judgement for classifying (accepting or rejecting) programs.

- “accept” program if some complete derivation gives the program a type
- “reject” otherwise (if no complete derivation gives the program a type)

A sound type system never accepts a program that can get stuck.
A complete type system never rejects a program that can’t get stuck.

Typically, it is undecidable whether a program can get stuck.

- If we want an algorithm to decide if a type system accepts a program, then the type system cannot be both sound and complete.
- Be _________ and don’t be _________.

Matthew Fluet
Programming Language Theory
Lecture 09
Soundness and Completeness

A *type system* is a judgement for classifying (accepting or rejecting) programs.
- “accept” program if some complete derivation gives the program a type
- “reject” otherwise (if no complete derivation gives the program a type)

A *sound* type system never accepts a program that can get stuck.

A *complete* type system never rejects a program that can’t get stuck.

Typically, it is *undecidable* whether a program can get stuck.
- If we want an *algorithm* to decide if a type system accepts a program, then the type system cannot be both sound and complete.
- Be **sound** and don’t be **complete**.
Soundness and Completeness

A *type system* is a judgement for classifying (accepting or rejecting) programs.

- “accept” program if some complete derivation gives the program a type
- “reject” otherwise (if no complete derivation gives the program a type)

A *sound* type system never accepts a program that can get stuck.
A *complete* type system never rejects a program that can’t get stuck.

Typically, it is *undecidable* whether a program can get stuck.

- If we want an *algorithm* to decide if a type system accepts a program, then the type system cannot be both sound and complete.
- Be ___sound___ and don’t be ___complete___.
- Try to reduce false positives in practice.
- Full employment theorem for type-system designers.
Wrong Attempt

\[\tau ::= \text{int} \mid \text{fn} \]

\[\vdash e : \tau \]

\[\vdash \lambda x. e : \text{fn} \]

\[\vdash c : \text{int} \]

\[\vdash e_1 : \text{fn} \quad \vdash e_2 : \text{int} \]

\[\vdash e_1 e_2 : \text{int} \]
Wrong Attempt

\[\tau ::= \text{int} \mid \text{fn} \]

\[\vdash e : \tau \]

\[\vdash \lambda x. e : \text{fn} \quad \vdash c : \text{int} \]

\[\vdash e_1 : \text{fn} \quad \vdash e_2 : \text{int} \]

1. NO: unsound
 ▶ because \((\lambda x. y) 3\) is accepted, but gets stuck

2. NO: too restrictive (e.g., disallows function arguments)
 ▶ because \((\lambda x. x 3) (\lambda y. y)\) is rejected, but does not get stuck

3. NO: types not preserved
 ▶ because \((\lambda x. \lambda y. y) 3\) evaluates to a non-integer
Getting it right

1. Need to type-check function bodies, which have free variables
2. Need to distinguish functions according to argument and result types

For (1): \[\Gamma ::= \cdot | \Gamma, x : \tau \text{ and } \Gamma \vdash e : \tau. \]

▶ Require whole program to type-check under the empty context \(\cdot \).

For (2): \[\tau ::= \text{int} | \tau \to \tau \]

▶ (an infinite number of types)

▶ e.g.s: \(\text{int} \to \text{int}, (\text{int} \to \text{int}) \to \text{int}, \text{int} \to (\text{int} \to \text{int}). \)

▶ Concrete syntax note: \(\to \) is right-associative, so \(\tau_1 \to \tau_2 \to \tau_3 \) is \(\tau_1 \to (\tau_2 \to \tau_3) \).
STLC Type System

\[
\begin{align*}
\tau & ::= \text{int} \mid \tau \rightarrow \tau \\
\Gamma & ::= \cdot \mid \Gamma, x:\tau
\end{align*}
\]

\[\Gamma \vdash e : \tau\]

\[\Gamma \vdash c : \text{int}\] \[\Gamma \vdash x : \Gamma(x)\]

\[\Gamma, x : \tau_a \vdash e : \tau_r\]

\[\Gamma \vdash \lambda x. e : \tau_a \rightarrow \tau_r\]

\[\Gamma \vdash e_f : \tau_a \rightarrow \tau_r\]

\[\Gamma \vdash e_a : \tau_a\]

\[\Gamma \vdash e_f \ e_a : \tau_r\]

The \textit{function-introduction} rule is the interesting one . . .
A closer look

\[\Gamma, x : \tau_a \vdash e : \tau_r \]
\[\Gamma \vdash \lambda x. e : \tau_a \rightarrow \tau_r \]

Where did \(\tau_a \) come from?

- Our rule “inferred” or “guessed” it.
- To be (completely) syntax directed, change \(\lambda x. e \) to \(\lambda x : \tau. e \) and use that \(\tau \).
 - Like Java, C, etc., where one must declare the types of fn arguments.

Can think of “adding \(x \)” as shadowing or requiring \(x \not\in \text{Dom}(\Gamma) \). Systematic renaming (\(\alpha \)-conversion) ensures \(x \not\in \text{Dom}(\Gamma) \) is not a problem.
A closer look

\[\Gamma, x : \tau_a \vdash e : \tau_r \]
\[\Gamma \vdash \lambda x. e : \tau_a \rightarrow \tau_r \]

Is our type system too restrictive?
- A matter of opinion
- But, it does reject programs that don't get stuck.

Example: \((\lambda x. (x (\lambda y. y)) (x 3)) (\lambda z. z)\)
- Does not get stuck; evaluates to 3.
- But does not type check.
 - There is no \(\tau\) such that \(\cdot \vdash (\lambda x. (x (\lambda y. y)) (x 3)) (\lambda z. z) : \tau\)
 - Need to pick exactly one type for \(x\),
 but first occurrence wants \((\text{int} \rightarrow \text{int}) \rightarrow (\text{int} \rightarrow \text{int})\)
 and second occurrence wants \(\text{int} \rightarrow \text{int}\)
Type systems are always restrictive

Whether or not a program “gets stuck” is undecidable:

- If e has no constants or free variables, then $e \ (3 \ 4)$ (or $e \ x$) gets stuck iff e terminates.
- A complete type system would need to decide the Halting Problem.

Old conclusion: “Strong types for weak minds”

- need/provide back door (unchecked cast)
Type systems are always restrictive

Whether or not a program “gets stuck” is undecidable:

- If \(e \) has no constants or free variables,
 then \(e \ (3 \ 4) \) (or \(e \ x \)) gets stuck iff \(e \) terminates.

- A complete type system would need to decide the Halting Problem.

Modern conclusion: Unsafe constructs are almost never worth the risk

- Make “false positives” (rejecting safe program) rare enough.
 - Have compile-time resources for “fancy” type systems.
- Make “false negatives” (accepting unsafe program) impossible and make alternatives for false positives convenient enough.
Evaluating STLC

Does STLC make false negatives impossible? Yes. So, STLC is sound:

- As language dictators, we deemed \textit{c e} and free variables “bad”
 - neither answers/values nor reducible
- Our type system is a \textit{conservative} checker that an expression will never get stuck

Does STLC make false positives rare? No. So, STLC is incomplete (and far too restrictive):

- In practice: it often prevents safe and natural code reuse
- In theory: it is not even Turing-complete
 - Theorem: All well-typed STLC programs terminate
 - A good-to-know and useful property, but inappropriate for a general-purpose PL
- Nonetheless, a \textbf{good starting point} (we’ll extend with more expressions and typing rules)
Type Soundness

We will take a *syntactic* (operational) approach to soundness/safety
▶ (the popular way since the early 90s)

Theorem (Type Safety): If $\cdot \vdash e : \tau$, then either e diverges or there exists a v'' such that $e \rightarrow^*_{cbv} v''$ (and $\cdot \vdash v'' : \tau$).

Theorem (Type Safety): If $\cdot \vdash e : \tau$ and $e \rightarrow^*_{cbv} e'$, then e' is not stuck (either e' is a value of there exists an e'' such that $e' \rightarrow_{cbv} e''$).
Type Soundness

We will take a *syntactic* (operational) approach to soundness/safety

► (the popular way since the early 90s)

Theorem (Type Safety): If \(\cdot \vdash e : \tau \), then either \(e \) diverges
or there exists a \(v'' \) such that \(e \rightarrow^{*}_{\text{cbv}} v'' \) (and \(\cdot \vdash v'' : \tau \)).

Theorem (Type Safety): If \(\cdot \vdash e : \tau \) and \(e \rightarrow^{*}_{\text{cbv}} e' \), then \(e' \) is not stuck
(either \(e' \) is a value or there exists an \(e'' \) such that \(e' \rightarrow_{\text{cbv}} e'' \)).

Proof: By induction on (the derivation) \(e \rightarrow^{*}_{\text{cbv}} e' \) using the next two lemmas.
Type Soundness

We will take a *syntactic* (operational) approach to soundness/safety

► (the popular way since the early 90s)

Theorem (Type Safety): If \(\cdot \vdash e : \tau \), then either \(e \) diverges
or there exists a \(v'' \) such that \(e \rightarrow^{*} \text{cbv} \ v'' \) (and \(\cdot \vdash v'' : \tau \)).

Theorem (Type Safety): If \(\cdot \vdash e : \tau \) and \(e \rightarrow^{*} \text{cbv} \ e' \), then \(e' \) is not stuck
(either \(e' \) is a value of there exists an \(e'' \) such that \(e' \rightarrow_{\text{cbv}} e'' \)).

Proof: By induction on (the derivation) \(e \rightarrow^{*} \text{cbv} \ e' \) using the next two lemmas.

Lemma (Preservation): If \(\cdot \vdash e : \tau \) and \(e \rightarrow_{\text{cbv}} e' \), then \(\cdot \vdash e' : \tau \).

Lemma (Progress): If \(\cdot \vdash e' : \tau \), then either \(e' \) is a value
or there exists an \(e'' \) such that \(e' \rightarrow_{\text{cbv}} e'' \).