Programming Language Theory

Equivalence
Looking back, looking forward

Done: IMP

- abstract syntax
- operational semantics (large-step and small-step)
- semantic properties of (sets of) programs — proofs
- “pseudo-denotational” semantics

Today: Equivalence

- equivalence of programs in a semantics
- equivalence of different semantics

Next: λ-calculus
Equivalence motivation

- Program equivalence (we change the program):
 - code optimizer
 - code maintainer

- Semantics equivalence (we change the language):
 - compiler correctness
 - interpreter optimizer
 - language designer
 - (prove properties for equivalent semantics with easier proof)

Warning: Proofs are easy with the right semantics and lemmas
- (almost never start off with right semantics and lemmas)

Note: Small-step operational semantics often has harder proofs, but models more interesting things
What is equivalence?

Equivalence depends on what is observable!
What is equivalence?

Equivalence depends on what is observable!

- Partial I/O equivalence (if terminates, same ans)
 - while 1 skip equivalent to everything
 - not transitive

- Total I/O equivalence (same termination behavior, same ans)
- Total heap equivalence (same termination behavior, same heaps)
 - heaps are syntactically equal
 - all variables have the same value
 - almost all variables have the same value

- Equivalence plus complexity bounds
 - \(O(2^n) \) really equivalent to \(O(n) \)?

- Syntactic equivalence (perhaps with renaming)
 - too strict to be interesting
What is equivalence?

Equivalence depends on what is observable!

- Partial I/O equivalence (if terminates, same ans)
 - `while 1 skip` equivalent to everything
 - not transitive
- Total I/O equivalence (same termination behavior, same ans)
 - Total heap equivalence (same termination behavior, same heaps)
 - heaps are syntactically equal
 - almost all variables have the same value

- Equivalence plus complexity bounds
 - Is $O(2^n)$ really equivalent to $O(n)$?
- Syntactic equivalence (perhaps with renaming)
 - too strict to be interesting
What is equivalence?

Equivalence depends on what is observable!

- Partial I/O equivalence (if terminates, same ans)
 - while 1 skip equivalent to everything
 - not transitive

- Total I/O equivalence (same termination behavior, same ans)

- Total heap equivalence (same termination behavior, same heaps)
 - heaps are syntactically equal
 - all variables have the same value
 - almost all variables have the same value
What is equivalence?

Equivalence depends on what is observable!

- Partial I/O equivalence (if terminates, same ans)
 - while 1 skip equivalent to everything
 - not transitive

- Total I/O equivalence (same termination behavior, same ans)

- Total heap equivalence (same termination behavior, same heaps)
 - heaps are syntactically equal
 - all variables have the same value
 - almost all variables have the same value

- Equivalence plus complexity bounds
 - Is $O(2^n)$ really equivalent to $O(n)$?
What is equivalence?

Equivalence depends on what is observable!

- Partial I/O equivalence (if terminates, same ans)
 - `while 1 skip` equivalent to everything
 - not transitive
- Total I/O equivalence (same termination behavior, same ans)
- Total heap equivalence (same termination behavior, same heaps)
 - heaps are syntactically equal
 - all variables have the same value
 - almost all variables have the same value
- Equivalence plus complexity bounds
 - Is $O(2^n)$ really equivalent to $O(n)$?
- Syntactic equivalence (perhaps with renaming)
 - too strict to be interesting
What is equivalence?

Equivalence depends on what is observable!

- Partial I/O equivalence (if terminates, same ans)
 - while 1 skip equivalent to everything
 - not transitive

- Total I/O equivalence (same termination behavior, same ans)

- Total heap equivalence (same termination behavior, same heaps)
 - heaps are syntactically equal
 - all variables have the same value
 - almost all variables have the same value

- Equivalence plus complexity bounds
 - Is $O(2^n)$ really equivalent to $O(n)$?

- Syntactic equivalence (perhaps with renaming)
 - too strict to be interesting
Program example: Strength reduction

Motivation: Strength reduction

- a common compiler optimization due to architecture issues

Theorem:

\[H; e \ast 2 \downarrow c \text{ if and only if } H; e + e \downarrow c \]

Proof Sketch:

- Just need “inversion on derivation” and math
- no induction
Program example: Nested strength reduction

Theorem:

If e_1 has a subexpression of the form $e * 2$, then $H; e_1 \Downarrow c'$ if and only if $H; e_2 \Downarrow c'$ where e_2 is e_1 with $e * 2$ replaced by $e + e$.
Program example: Nested strength reduction

Theorem:

If \(e_1 \) has a subexpression of the form \(e * 2 \),
then \(H;e_1 \Downarrow c' \) if and only if \(H;e_2 \Downarrow c' \)
where \(e_2 \) is \(e_1 \) with \(e * 2 \) replaced by \(e + e \).

First, some useful meta-notation:

\[
C ::= [\cdot] \mid C + e \mid e + C \mid C * e \mid e * C
\]

\(C[e] \) is “\(C \) with \(e \) plugged into the hole”.
Program example: Nested strength reduction

Theorem:

If e_1 has a subexpression of the form $e \ast 2$, then $H; e_1 \Downarrow c'$ if and only if $H; e_2 \Downarrow c'$ where e_2 is e_1 with $e \ast 2$ replaced by $e + e$.

First, some useful meta-notation:

$$C ::=[\cdot] | C + e | e + C | C \ast e | e \ast C$$

$C[e]$ is “C with e plugged into the hole”.

Theorem:

If $(e_1 = C[e \ast 2]$ and $e_2 = C[e + e]$) then $(H; e_1 \Downarrow c'$ if and only if $H; e_2 \Downarrow c'$).

Proof sketch:

▶ By structural induction on C.
Small-step program equivalence

These sort of proofs also work with small-step semantics (e.g., IMP statements), but tend to be more cumbersome, even to state.

Example: The statement-sequence operator is associative. That is,

- For all n, if $H; s_1; (s_2; s_3) \rightarrow^n H'; \text{skip}$, then there exist H'' and n' such that $H;(s_1; s_2); s_3 \rightarrow^{n'} H''; \text{skip}$ and $H''(\text{ans}) = H'(\text{ans})$.

- If for all n there exist H' and s' such that $H;s_1; (s_2; s_3) \rightarrow^n H'; s'$, then for all n there exist H'' and s'' such that $H;(s_1; s_2); s_3 \rightarrow^n H''; s''$.

(Proof needs a much stronger induction hypothesis.)

One way to avoid it: Prove large-step and small-step semantics equivalent, then prove program equivalences in whichever semantics is easier.
Language example

IMP w/o multiply (large-step):

- **CONST**
 \[
 \frac{\text{H } @ x \leadsto c}{\text{H}; c \Downarrow c}
 \]

- **VAR**
 \[
 \frac{\text{H } @ x \leadsto c}{\text{H}; x \Downarrow c}
 \]

- **ADD**
 \[
 \frac{\text{H}; e_1 \Downarrow c_1 \quad \text{H}; e_2 \Downarrow c_2}{\text{H}; e_1 + e_2 \Downarrow c_1 + c_2}
 \]

IMP w/o multiply (small-step):

- **SVAR**
 \[
 \frac{\text{H } @ x \leadsto c}{\text{H}; x \rightarrow c}
 \]

- **SADD**
 \[
 \frac{\text{H}; c_1 + c_2 \rightarrow c_1 + c_2}{\text{H}; e_1 + e_2 \rightarrow e_1 + e_2}
 \]

- **SADDL**
 \[
 \frac{\text{H}; e_1 \rightarrow e'_1}{\text{H}; e_1 + e_2 \rightarrow e'_1 + e_2}
 \]

- **SADDR**
 \[
 \frac{\text{H}; e_2 \rightarrow e'_2}{\text{H}; e_1 + e_2 \rightarrow e_1 + e'_2}
 \]

Theorem: Semantics are equivalent; \(\text{H}; e \Downarrow c \) if and only if \(\text{H}; e \rightarrow^* c \).

Proof: We prove the two directions separately.
Proof, part 1:

Forward: Assume $H;e \downarrow c$; show $\exists n. H;e \rightarrow^n c$.

Lemma (prove it!): If $H;e \rightarrow n e'$, then $H;e_1 + e \rightarrow n e_1' + e'$ and $H;e + e_2 \rightarrow n e' + e_2$.

▶ (Proof uses \([\text{saddl}]\) and \([\text{saddr}]\).)

Now, prove by structural induction on (the derivation of) $H;e \downarrow c$:

▶ \([\text{const}]\): Derivation is via \([\text{const}]\) and e is c, so derive $H; c \rightarrow 0 c$.

▶ \([\text{var}]\): Derivation is via \([\text{var}]\) and e is x and $H @ x; c$, so derive, by \([\text{svar}]\) using $H @ x; c$, $H; x \rightarrow 1 c$.

▶ \([\text{add}]\): Derivation is via \([\text{add}]\) and e is $e_1 + e_2$, $H; e_1 \downarrow c_1$, $H; e_2 \downarrow c_2$, and c is $c_1 + c_2$. By induction, $\exists n_1. H; e_1 \rightarrow n_1 c_1$ and $\exists n_2. H; e_2 \rightarrow n_2 c_2$. By our lemma, $H; e_1 + e_2 \rightarrow n_1 c_1 + e_2$ and $H; c_1 + e_2 \rightarrow n_2 c_1 + c_2$. Derive, by \([\text{sadd}]\) and c is $c_1 + c_2$, $H; c_1 + c_2 \rightarrow c$. So derive $H; e_1 + e_2 \rightarrow n_1 + n_2 + 1 c$.

Matthew Fluet
Programming Language Theory
Lecture 06
Proof, part 1:

Forward: Assume $H;e \downarrow c$; show $\exists n. H;e \rightarrow^n c$.

Lemma (prove it!): If $H;e \rightarrow^n e'$, then $H;e_1 + e \rightarrow^n e_1 + e'$ and $H;e + e_2 \rightarrow^n e' + e_2$.

► (Proof uses [SADDL] and [SADDR].)
Proof, part 1:

Forward: Assume $H;e \downarrow c$; show $\exists n. H;e \rightarrow^n c$.

Lemma (prove it!): If $H;e \rightarrow^n e'$, then $H;e_1 + e \rightarrow^n e_1 + e'$ and $H;e + e_2 \rightarrow^n e' + e_2$.

▶ (Proof uses $[SADDL]$ and $[SADDR]$.)

Now, prove by structural induction on (the derivation of) $H;e \downarrow c$:

Proof, part 1:

Forward: Assume \(H;e \downarrow c \); show \(\exists n. \ H;e \rightarrow^n c \).

Lemma (prove it!): If \(H;e \rightarrow^n e' \), then \(H;e_1 + e \rightarrow^n e_1 + e' \) and \(H;e + e_2 \rightarrow^n e' + e_2 \).

▶ (Proof uses \([saddl]\) and \([saddr]\).)

Now, prove by structural induction on (the derivation of) \(H;e \downarrow c \):

▶ \([\text{CONST}]\): Derivation is via \([\text{CONST}]\) and \(e \) is \(c \), so derive \(H;c \rightarrow^0 c \).
Proof, part 1:

Forward: Assume $H;e \Downarrow c$; show $\exists n. H;e \rightarrow^n c$.

Lemma (prove it!): If $H;e \rightarrow^n e'$, then $H;e_1 + e \rightarrow^n e_1 + e'$ and $H;e + e_2 \rightarrow^n e' + e_2$.

▶ (Proof uses [SADDL] and [SADDR].)

Now, prove by structural induction on (the derivation of) $H;e \Downarrow c$:

▶ [CONST]: Derivation is via [CONST] and e is c, so derive $H;c \rightarrow^0 c$.

▶ [VAR]: Derivation is via [VAR] and e is x and $H @ x \leadsto c$, so derive, by [SVAR] using $H @ x \leadsto c$, $H;x \rightarrow^1 c$.

Matthew Fluet Programming Language Theory Lecture 06
Proof, part 1:

Forward: Assume \(H;e \downarrow c \); show \(\exists n. H;e \rightarrow^n c \).

Lemma (prove it!): If \(H;e \rightarrow^n e' \), then \(H;e_1 + e \rightarrow^n e_1 + e' \) and \(H;e + e_2 \rightarrow^n e' + e_2 \).

(Proof uses [SADDL] and [SADDR].)

Now, prove by structural induction on (the derivation of) \(H;e \downarrow c \):

- **[CONST]:** Derivation is via [CONST] and \(e \) is \(c \), so derive \(H;c \rightarrow^0 c \).
- **[VAR]:** Derivation is via [VAR] and \(e \) is \(x \) and \(H \mathbin{@} x \leadsto c \), so derive, by [SVAR] using \(H \mathbin{@} x \leadsto c \), \(H;x \rightarrow^1 c \).
- **[ADD]:** Derivation is via [ADD] and \(e \) is \(e_1 + e_2 \), \(H;e_1 \downarrow c_1 \), \(H;e_2 \downarrow c_2 \), and \(c \) is \(c_1 + c_2 \). By induction, \(\exists n_1. H;e_1 \rightarrow^{n_1} c_1 \) and \(\exists n_2. H;e_2 \rightarrow^{n_2} c_2 \). By our lemma, \(H;e_1 + e_2 \rightarrow^{n_1} c_1 + e_2 \) and \(H;c_1 + e_2 \rightarrow^{n_2} c_1 + c_2 \). Derive, by [SADD] and \(c \) is \(c_1 + c_2 \), \(H;c_1 + c_2 \rightarrow c \). So derive \(H;e_1 + e_2 \rightarrow^{n_1+n_2+1} c \).
Proof, part 2:

Backward: Assume $\exists n. H;e \rightarrow^n c$; show $H;e \Downarrow c$.
Proof, part 2:

Backward: Assume \(\exists n. \ H;e \rightarrow^n c \); show \(H;e \downarrow c \).

Prove by induction on \(n \):
Proof, part 2:

Backward: Assume $\exists n. \; H; e \rightarrow^n c$; show $H; e \Downarrow c$.

Prove by induction on n:

- $n = 0$: e is c and [CONST] lets us derive $H; c \Downarrow c$.
Proof, part 2:

Backward: Assume $\exists n. \ H;e \rightarrow^n c$; show $H;e \downarrow c$.

Prove by induction on n:

- $n = 0$: e is c and $[\text{CONST}]$ lets us derive $H;c \downarrow c$.
- $n = m + 1$: $\exists e'. \ H;e \rightarrow e'$ and $H;e' \rightarrow^m c$.
 - By induction (on $H;e' \rightarrow^m c$), we have $H;e' \downarrow c$.
 - So this lemma suffices: If $H;e \rightarrow e'$ and $H;e' \downarrow c$, then $H;e \downarrow c$.
Proof, part 2:

Backward: Assume $\exists n. H;e \rightarrow^n c$; show $H;e \downarrow c$.

Prove by induction on n:

- $n = 0$: e is c and $[\text{CONST}]$ lets us derive $H;c \downarrow c$.

- $n = m + 1$: $\exists e'. H;e \rightarrow e'$ and $H;e' \rightarrow^m c$.
 By induction (on $H;e' \rightarrow^m c$), we have $H;e' \downarrow c$.
 So this lemma suffices: If $H;e \rightarrow e'$ and $H;e' \downarrow c$, then $H;e \downarrow c$.

Prove the lemma by structural induction on (the derivation of) $H;e \rightarrow e'$:
Proof, part 2:

Backward: Assume $\exists n. H;e \rightarrow^n c$; show $H;e \Downarrow c$.

Prove by induction on n:

- $n = 0$: e is c and [CONST] lets us derive $H;c \Downarrow c$.

- $n = m + 1$: $\exists e'. H;e \rightarrow e'$ and $H;e' \rightarrow^m c$.
 By induction (on $H;e' \rightarrow^m c$), we have $H;e' \Downarrow c$.
 So this lemma suffices: If $H;e \rightarrow e'$ and $H;e' \Downarrow c$, then $H;e \Downarrow c$.

Prove the lemma by structural induction on (the derivation of) $H;e \rightarrow e'$:

- [SVAR]: Derivation is via [SVAR] and e is x, $H @ x \rightsquigarrow c$, and e' is c, so derive, by [VAR] and $H @ x \rightsquigarrow c$, $H;x \Downarrow c$.
Proof, part 2:

Backward: Assume \(\exists n. \ H;e \rightarrow^n c \); show \(H;e \downarrow c \).

Prove by induction on \(n \):

- \(n = 0 \): \(e \) is \(c \) and \([\text{CONST}]\) lets us derive \(H;c \downarrow c \).

- \(n = m + 1 \): \(\exists e'. \ H;e \rightarrow e' \) and \(H;e' \rightarrow^m c \).

 By induction (on \(H;e' \rightarrow^m c \)), we have \(H;e' \downarrow c \).

 So this lemma suffices: If \(H;e \rightarrow e' \) and \(H;e' \downarrow c \), then \(H;e \downarrow c \).

Prove the lemma by structural induction on (the derivation of) \(H;e \rightarrow e' \):

- \([\text{SVAR}]\): Derivation is via \([\text{SVAR}]\) and \(e \) is \(x \), \(H \@ x \leadsto c \), and \(e' \) is \(c \), so derive, by \([\text{VAR}]\) and \(H \@ x \leadsto c \), \(H;x \downarrow c \).

- \([\text{SADD}]\): Derivation is via \([\text{SADD}]\) and \(e \) is \(c_1 + c_2 \) and \(e' \) is \(c_1 + c_2 \), so derive, by \([\text{CONST}]\) and \([\text{ADD}]\), \(H;c_1 + c_2 \downarrow c_1 + c_2 \).
Proof, part 2:

Backward: Assume $\exists n. \ H;e \to^n c$; show $H;e \Downarrow c$.

Prove by induction on n:

- $n = 0$: e is c and $[\text{CONST}]$ lets us derive $H;c \Downarrow c$.
- $n = m + 1$: $\exists e'$. $H;e \to e'$ and $H;e' \to^m c$.
 By induction (on $H;e' \to^m c$), we have $H;e' \Downarrow c$.
 So this lemma suffices: If $H;e \to e'$ and $H;e' \Downarrow c$, then $H;e \Downarrow c$.

Prove the lemma by structural induction on (the derivation of) $H;e \to e'$:

- $[\text{SVAR}]$: Derivation is via $[\text{SVAR}]$ and e is x, $H \@ x \leadsto c$, and e' is c, so derive, by $[\text{VAR}]$ and $H \@ x \leadsto c$, $H;x \Downarrow c$.
- $[\text{SADD}]$: Derivation is via $[\text{SADD}]$ and e is $c_1 + c_2$ and e' is $c_1 + c_2$, so derive, by $[\text{CONST}]$ and $[\text{ADD}]$, $H;c_1 + c_2 \Downarrow c_1 + c_2$.
- $[\text{SADDL}]$: ...
- $[\text{SADDR}]$: ...
Proof, part 2 (cont’d):

- $n = m + 1$: $\exists e'. H;e \rightarrow e'$ and $H;e' \rightarrow^m c$.

 By induction (on $H;e' \rightarrow^m c$), we have $H;e' \Downarrow c$.

 So this lemma suffices: If $H;e \rightarrow e'$ and $H;e' \Downarrow c$, then $H;e \Downarrow c$.

Prove the lemma by structural induction on (the derivation of) $H;e \rightarrow e'$:

- [SADDL]: Derivation is via [SADDL]

 and e is $e_1 + e_2$, $H;e_1 \rightarrow e'_1$, and e' is $e'_1 + e_2$.

Proof, part 2 (cont’d):

- \(n = m + 1 \): \(\exists e'. H;e \to e' \) and \(H;e' \to^m c \).

 By induction (on \(H;e' \to^m c \)), we have \(H;e' \Downarrow c \).
 So this lemma suffices: If \(H;e \to e' \) and \(H;e' \Downarrow c \), then \(H;e \Downarrow c \).

Prove the lemma by structural induction on (the derivation of) \(H;e \to e' \):

- [SADDL]: Derivation is via [SADDL]
 and \(e \) is \(e_1 + e_2 \), \(H;e_1 \to e'_1 \), and \(e' \) is \(e'_1 + e_2 \).
 By \(H;e'_1 + e_2 \Downarrow c \) and inversion,
 \(H;e'_1 \Downarrow c_1 \), \(H;e_2 \Downarrow c_2 \), and \(c \) is \(c_1 + c_2 \).
Proof, part 2 (cont’d):

- \(n = m + 1: \exists e'. H;e \rightarrow e' \) and \(H;e' \rightarrow^m c \).
 - By induction (on \(H;e' \rightarrow^m c \)), we have \(H;e' \downarrow c \).
 - So this lemma suffices: If \(H;e \rightarrow e' \) and \(H;e' \downarrow c \), then \(H;e \downarrow c \).

Prove the lemma by structural induction on (the derivation of) \(H;e \rightarrow e' \):

- \([\text{SADDL}]: \) Derivation is via \([\text{SADDL}]\)
 and \(e \) is \(e_1 + e_2 \), \(H;e_1 \rightarrow e'_1 \), and \(e' \) is \(e'_1 + e_2 \).
 - By \(H;e'_1 + e_2 \downarrow c \) and inversion,
 \(H;e'_1 \downarrow c_1 \), \(H;e_2 \downarrow c_2 \), and \(c \) is \(c_1 + c_2 \).
 - By the inductive hypothesis with \(H;e_1 \rightarrow e'_1 \) and \(H;e'_1 \downarrow c_1 \),
 \(H;e_1 \downarrow c_1 \).
Proof, part 2 (cont’d):

- \(n = m + 1: \exists e'. \quad H;e \to e' \text{ and } H;e' \to^m c. \)

 By induction (on \(H;e' \to^m c \)), we have \(H;e' \Downarrow c. \)

 So this lemma suffices: If \(H;e \to e' \) and \(H;e' \Downarrow c \), then \(H;e \Downarrow c. \)

Prove the lemma by structural induction on (the derivation of) \(H;e \to e' \):

- \([\text{SADDL}]\): Derivation is via \([\text{SADDL}]\)

 and \(e \) is \(e_1 + e_2 \), \(H;e_1 \to e_1' \), and \(e' \) is \(e_1' + e_2 \).

 By \(H;e_1' + e_2 \Downarrow c \) and inversion,

 \(H;e_1' \Downarrow c_1 \), \(H;e_2 \Downarrow c_2 \), and \(c \) is \(c_1 + c_2 \).

 By the inductive hypothesis with \(H;e_1 \to e_1' \) and \(H;e_1' \Downarrow c_1 \),

 \(H;e_1 \Downarrow c_1 \).

 So derive, by \([\text{ADD}]\) with \(H;e_1 \Downarrow c_1 \) and \(H;e_2 \Downarrow c_2 \),

 \(H;e_1 + e_2 \Downarrow c. \)
Proof, part 2 (cont’d):

- \(n = m + 1 \): \(\exists e'. \ H;e \rightarrow e' \) and \(H;e' \rightarrow^m c \).

 By induction (on \(H;e' \rightarrow^m c \)), we have \(H;e' \downarrow c \).

 So this lemma suffices: If \(H;e \rightarrow e' \) and \(H;e' \downarrow c \), then \(H;e \downarrow c \).

Prove the lemma by structural induction on (the derivation of) \(H;e \rightarrow e' \):

- \([\text{SADDL}]\): Derivation is via \([\text{SADDL}]\)
 and \(e \) is \(e_1 + e_2 \), \(H;e_1 \rightarrow e'_1 \), and \(e' \) is \(e'_1 + e_2 \).

 By \(H;e'_1 + e_2 \downarrow c \) and inversion,
 \(H;e'_1 \downarrow c_1 \), \(H;e_2 \downarrow c_2 \), and \(c \) is \(c_1 + c_2 \).

 By the inductive hypothesis with \(H;e_1 \rightarrow e'_1 \) and \(H;e'_1 \downarrow c_1 \),
 \(H;e_1 \downarrow c_1 \).

 So derive, by \([\text{ADD}]\) with \(H;e_1 \downarrow c_1 \) and \(H;e_2 \downarrow c_2 \),
 \(H;e_1 + e_2 \downarrow c \).

- \([\text{SADDR}]\): Analogous to \([\text{SADDL}]\).
A nice payoff

Theorem: The small-step semantics is deterministic.

- If $H;e \rightarrow^* c_1$ and $H;e \rightarrow^* c_2$, then $c_1 = c_2$.

Not obvious (see [SADDL] and [SADDR]), nor do I know a direct proof.

- Given $(((1 + 2) + (3 + 4)) + (5 + 6)) + (7 + 8)$
 there are many execution sequences, all of which produce 36,
 but with different intermediate expressions.

(Indirect) Proof:

- Large-step evaluation is deterministic (easy proof by induction).
- Small-step and and large-step are equivalent (just proved that).
- So small-step is deterministic.
- (Convince yourself that a deterministic and a nondeterministic
 semantics can’t be equivalent with our definition of equivalence.)
Conclusions

- Equivalence is a subtle concept.
- Proofs “seem obvious” only when the definitions are right.
- Some other language-equivalence claims:

Theorem: Languages are equivalent.
(True)

Change syntax of heap and replace \[\text{assgn}\] and \[\text{var}\] rules with \[H; x := e \rightarrow H, x \mapsto e; \text{skip} H; @x; e H; e \Downarrow c; H; x \Downarrow c]

Theorem: Languages are equivalent.
(False)
Conclusions

- Equivalence is a subtle concept.
- Proofs “seem obvious” only when the definitions are right.
- Some other language-equivalence claims:

Replace \([\text{WHILE}]\) rule with

\[
\begin{align*}
H; e \Downarrow c & \quad c \leq 0 \\
H; \text{while } e \text{ s} & \rightarrow H; \text{skip}
\end{align*}
\]

\[
\begin{align*}
H; e \Downarrow c & \quad c > 0 \\
H; \text{while } e \text{ s} & \rightarrow H; s \text{ ; while } e \text{ s}
\end{align*}
\]

Theorem: Languages are equivalent.
Conclusions

- Equivalence is a subtle concept.
- Proofs “seem obvious” only when the definitions are right.
- Some other language-equivalence claims:

 Replace \texttt{[while]} rule with

 \[
 \begin{align*}
 H; e \Downarrow c \quad c &\leq 0 \\
 H; \text{while } e \ s &\rightarrow H; \text{skip} \\
 H; e \Downarrow c \quad c &> 0 \\
 H; \text{while } e \ s &\rightarrow H; s \ ; \text{while } e \ s
 \end{align*}
 \]

 Theorem: Languages are equivalent. \quad (True)
Conclusions

- Equivalence is a subtle concept.
- Proofs “seem obvious” only when the definitions are right.
- Some other language-equivalence claims:

Replace \textbf{[WHILE]} rule with

\[
\begin{align*}
H; e \Downarrow c & \quad c \leq 0 \\
\text{while } e \ s \rightarrow H; \text{skip} & \\
\end{align*}
\quad \quad
\begin{align*}
H; e \Downarrow c & \quad c > 0 \\
\text{while } e \ s \rightarrow H; \text{skip} & \\
\end{align*}
\]

Theorem: Languages are equivalent. \quad \text{(True)}

Change syntax of heap and replace \textbf{[ASSGN]} and \textbf{[VAR]} rules with

\[
\begin{align*}
H; x := e & \rightarrow H, x \mapsto e; \text{skip} \\
\end{align*}
\quad \quad
\begin{align*}
H \circ x & \rightarrow e \\
H; e \Downarrow c & \\
\end{align*}
\]

Theorem: Languages are equivalent.
Conclusions

- Equivalence is a subtle concept.
- Proofs “seem obvious” only when the definitions are right.
- Some other language-equivalence claims:

Replace `[WHILE]` rule with

\[
\begin{align*}
H;e \Downarrow c & \quad c \leq 0 \\
\hline
H;\text{while } e \text{ } s & \rightarrow H;\text{skip}
\end{align*}
\]

\[
\begin{align*}
H;e \Downarrow c & \quad c > 0 \\
\hline
H;\text{while } e \text{ } s & \rightarrow H;s \text{ } ; \text{ while } e \text{ } s
\end{align*}
\]

Theorem: Languages are equivalent. (True)

Change syntax of heap and replace `[ASSGN]` and `[VAR]` rules with

\[
\begin{align*}
H @ x & \sim e \\
\hline
H;e \Downarrow c
\end{align*}
\]

\[
\begin{align*}
H;e \Downarrow c \\
\hline
H;e \Downarrow c
\end{align*}
\]

Theorem: Languages are equivalent. (False)