Programming Language Theory

Proofs
Looking back, looking forward

- **Done:** IMP abstract syntax, operational semantics

- **Today and next:** Detailed proofs (and some wrong turns) of two “theorems”
 - How to prove them
 - Why these theorems are “interesting”

- **Future:**
 - Pseudo-denotational Semantics (via translation to ML)
 - Equivalence (when are programs the “same”?)
Proofs

Write out proofs (by hand, on the board) for:

- **while 1 skip** diverges
 - Key point: Must get induction hypothesis “just right” — not too strong (false) or too weak (proof doesn’t go through)

- “No negatives” is preserved by evaluation
 - Can define a program property via judgements and inference rules and prove that it is preserved by every step
 - “Inverting assumed derivations” gives you the necessary facts for smaller expressions/statements (e.g., the **while** case)
Motivation for “no negatives” theorem

While “no negatives is preserved” boils down to properties of \oplus and \ast, writing out the whole proof ensures that our language has no mistakes or bad interactions.

The theorem is false if we have:

- Overly flexible rules, e.g.:
 \[H;c \Downarrow c' \]

- An “unsafe” language like C:
 \[
 \begin{align*}
 H;e \Downarrow c & \quad H @ x \leadsto \langle c_0, \ldots, c_{n-1} \rangle & (0 > c \lor c \geq n) \\
 H;x[e] := e' & \rightarrow H';s'
 \end{align*}
 \]
Even more general proofs to come

We defined the semantics.

Given our semantics, we established properties of programs and sets of programs.

More interesting is having multiple semantics:

▶ For what program states are they equivalent?
▶ For what notion of equivalence?

Or having a more abstract semantics (e.g., a type system) and asking if it is preserved under evaluation.

▶ (If \(e \) has type \(\tau \) and \(e \) becomes \(e' \), does \(e' \) have type \(\tau \)?)
Review: **IMP** abstract syntax (programs and heaps)

\[
\begin{align*}
 s & ::= x := e \mid \text{skip} \mid s \mid s ; s \mid \text{if } e \ s \ s \mid \text{while } e \ s \\
 e & ::= c \mid x \mid e + e \mid e \ast e \\
 (c & \in \{\ldots, -2, -1, 0, 1, 2, \ldots\}) \\
 (x & \in \{x_1, x_2, \ldots, y_1, y_2, \ldots, z_1, z_2, \ldots, \ldots\})
\end{align*}
\]

\[
H ::= \cdot \mid H, x \mapsto c
\]

\[
H @ x \leadsto c
\]

EMPTY

\[
\begin{array}{c}
\cdot @ x \leadsto 0
\end{array}
\]

HIT

\[
\begin{array}{c}
H', x \mapsto c @ x \leadsto c
\end{array}
\]

MISS

\[
\begin{array}{c}
x \neq y' \quad H' @ x \leadsto c \\
H', y' \mapsto c' @ x \leadsto c
\end{array}
\]
Review: **IMP** operational semantics for expressions

\[H; e \Downarrow c \]

CONST

\[
\frac{}{H; c \Downarrow c}
\]

VAR

\[
H \@ x \rightsquigarrow c
\]

\[
H; x \Downarrow c
\]

ADD

\[
\frac{H; e_1 \Downarrow c_1 \quad H; e_2 \Downarrow c_2}{H; e_1 + e_2 \Downarrow c_1 + c_2}
\]

MULT

\[
\frac{H; e_1 \Downarrow c_1 \quad H; e_2 \Downarrow c_2}{H; e_1 \ast e_2 \Downarrow c_1 \ast c_2}
\]
Review: **IMP** operational semantics for statements (small-step)

\[
H_1; s_1 \rightarrow H_2; s_2
\]

ASSIGN

\[
\frac{H; e \downarrow c}{H; x := e \rightarrow H, \ x \mapsto c; \text{skip}}
\]

WHILE

\[
\frac{H; \text{while } e \ s \rightarrow}{H; \text{if } e \ (s \ ; \ \text{while } e \ s) \ \text{skip}}
\]

SEQ_SKIP

\[
\frac{H; \text{skip} \ ; \ s \rightarrow H; s}{H; \text{skip} \ ; \ s \rightarrow H; s}
\]

SEQ_STEP

\[
\frac{H; s_1 \rightarrow H'; s'_1}{H; s_1 \ ; \ s_2 \rightarrow H'; s'_1 \ ; \ s_2}
\]

IF_T

\[
\frac{H; e \downarrow c \quad c > 0}{H; \text{if } e \ s_1 \ s_2 \rightarrow H; s_1}
\]

IF_F

\[
\frac{H; e \downarrow c \quad c \leq 0}{H; \text{if } e \ s_1 \ s_2 \rightarrow H; s_2}
\]
Review: **IMP** operational semantics for programs (small-step)

\[H_1; s_1 \rightarrow^n H_2; s_2 \]

\[H; s \rightarrow^0 H; s \]

\[H_1; s_1 \rightarrow^m H_2; s_2 \quad \text{and} \quad H_2; s_2 \rightarrow H_3; s_3 \]

\[H_1; s_1 \rightarrow^{m+1} H_3; s_3 \]

\[s \rightarrow^* \text{c} \]

\[H; \text{skip} \]

\[H \oplus \text{ans} \leadsto \text{c} \]

\[s \rightarrow^* \text{c} \]
“No Negative Constants” Judgements and Inference Rules

\[\text{noneg}(e) \]

\[\begin{array}{c}
 c \geq 0 \\
 \hline
 \text{noneg}(c)
\end{array} \]

\[\begin{array}{c}
 \text{noneg}(e_1) \quad \text{noneg}(e_2) \\
 \hline
 \text{noneg}(e_1 + e_2)
\end{array} \]

\[\begin{array}{c}
 \text{noneg}(x) \\
 \hline
 \text{noneg}(e_1) \quad \text{noneg}(e_2) \\
 \hline
 \text{noneg}(e_1 \times e_2)
\end{array} \]
"No Negative Constants" Judgements and Inference Rules

\[\text{noneg}(s) \]

\[
\frac{\text{noneg}(e)}{\text{noneg}(x := e)} \quad \frac{\text{noneg}(\text{skip})}{\text{noneg}(s_1, s_2)} \\
\frac{\text{noneg}(e) \quad \text{noneg}(s_1) \quad \text{noneg}(s_2)}{\text{noneg}(\text{if } e \ s_1 \ s_2)} \quad \frac{\text{noneg}(e) \quad \text{noneg}(s)}{\text{noneg}(\text{while } e \ s)}
\]
“No Negative Constants” Judgements and Inference Rules

\[
\begin{align*}
\text{noneg}(H) & \quad \text{noneg}(H) \quad c \geq 0 \\
\text{noneg}(\cdot) & \quad \text{noneg}(H, x \mapsto c)
\end{align*}
\]