Programming Language Theory

Operational Semantics for IMP
Looking back, looking forward

- **Done**: IMP syntax, structural induction

- **Today**: IMP operational semantics
 - One of the two or three most important lectures of course

- **Tonight**: You could (almost?) finish Homework 1
Review: IMP abstract syntax

IMP’s abstract syntax is defined inductively (using BNF):

\[
\begin{align*}
 s & ::= x := e \mid \text{skip} \mid s \mid s \mid \text{if } e \ s \ s \mid \text{while } e \ s \\
 e & ::= c \mid x \mid e + e \mid e \ast e \\
 (c & \in \{\ldots, -2, -1, 0, 1, 2, \ldots\}) \\
 (x & \in \{x_1, x_2, \ldots, y_1, y_2, \ldots, z_1, z_2, \ldots, \ldots\})
\end{align*}
\]

We haven’t yet said what programs mean! (Syntax is boring)

Encode our “social understanding” about variables and control flow.

Emphasis on “social understanding”:

- we define the meaning of a program language
- the meaning of a programming language is not dictated
Outline

- Semantics for expressions
 - Informal idea; the need for heaps
 - Definition of heaps
 - The evaluation judgement (a relation form)
 - The evaluation inference rules (the relation definition)
 - Using inference rules
 - Derivation trees as interpreters
 - Or as proofs about expressions
 - Metatheory: Proofs about the semantics
- Then semantics for statements
 - (rinse and repeat)
Informal idea

Given expression e, what integer c does it evaluate to?

$$1 + 2$$

$$x + 2$$

It depends on the values of variables (of course).

Use a heap H to encode a total function from variables to constants.

\triangleright Could use partial functions, but then $\exists H$ and e for which there is no c

We'll define a relation over triples of H, e, and c.

\triangleright Will turn out to be a (total) function if we view H and e as inputs and c as output.

\triangleright With our metalanguage, it is easier to define a relation and then prove that it is a function (if, in fact, it is).
Informal idea

Given expression e, what integer c does it evaluate to?

$$1 + 2 \quad x + 2$$

It depends on the values of variables (of course).

Use a heap H to encode a total function from variables to constants.

- Could use partial functions,
 - but then $\exists H$ and e for which there is no c

We’ll define a relation over triples of H, e, and c.

- Will turn out to be a (total) function
 - if we view H and e as inputs and c as output.
- With our metalanguage, it is easier to define a relation and then prove that it is a function (if, in fact, it is).
Heaps

An abstract syntax for heaps:

\[H ::= \cdot \mid H, x \mapsto c \]

Describe heaps as a data structure.

A lookup-function for heaps:

\[
H(x) = \begin{cases}
 c & \text{if } H = H', x \mapsto c \\
 H'(x) & \text{if } H = H', y \mapsto c \text{ and } x \neq y \\
 0 & \text{if } H = \cdot
\end{cases}
\]

Last case avoids “errors” (makes the function total)

“What heap to use” will arise in the semantics of statements

▶ For expression evaluation, “we are given an \(H \)”
The judgement

We will write:

\[H; e \Downarrow c \]

to mean “\(e \) evaluates to \(c \) under heap \(H \)”.

We just made up metasyntax \(H; e \Downarrow c \) to follow PL convention and to distinguish it from other relations.

It is just a relation on triples of the form \((H, e, c) \).
The judgement

We will write:

\[H;e \downarrow c \]

to mean “e evaluates to c under heap H”.

We just made up metasyntax \(H;e \downarrow c \) to follow PL convention and to distinguish it from other relations.

It is just a relation on triples of the form \((H, e, c)\).

We can write \(\cdot, x \mapsto 3; x + y \downarrow 3 \), which will turn out to be true (this triple will be in the relation we define).

Or \(\cdot, x \mapsto 3; x + y \downarrow 6 \), which will turn out to be false (this triple will not be in the relation we define).
Inference rules

CONST

\[
H; c \Downarrow c
\]

VAR

\[
H; x \Downarrow H(x)
\]

ADD

\[
H; e_1 \Downarrow c_1 \quad H; e_2 \Downarrow c_2
\]

\[
H; e_1 + e_2 \Downarrow c_1 + c_2
\]

MULT

\[
H; e_1 \Downarrow c_1 \quad H; e_2 \Downarrow c_2
\]

\[
H; e_1 \ast e_2 \Downarrow c_1 \ast c_2
\]

Top: hypotheses
Bottom: conclusion

By definition, if all hypotheses hold, then the conclusion holds.

Each rule is a *schema* that you “ instantiate consistently”:

- Rules “work” “for all” \(H, c, e_1 \), etc.
- But “each” \(e_1 \) has to be the “same” expression.
Instantiating rules

Example instantiation:

\[
\cdot, y \mapsto 4; 3 + y \Downarrow 7 \quad \cdot, y \mapsto 4; 5 \Downarrow 5 \quad \cdot, y \mapsto 4;(3 + y) + 5 \Downarrow 12
\]

\[
\text{ADD}
\]

Instantiates:

\[
\begin{align*}
\text{ADD} & \\
H; e_1 \Downarrow c_1 & \quad H; e_2 \Downarrow c_2 \\
H; e_1 + e_2 \Downarrow c_1 + c_2 &
\end{align*}
\]

with:

\[
H = \cdot, y \mapsto 4
\]

\[
e_1 = 3 + y \quad c_1 = 7
\]

\[
e_2 = 5 \quad c_2 = 5
\]
Derivations

A (complete) derivation is a tree of instantiations with axioms at the leaves.

Example:

\[
\begin{align*}
\cdot, y \mapsto 4;3 \Downarrow 3 & \quad \text{Const} \\
\cdot, y \mapsto 4;y \Downarrow 4 & \quad \text{Var} \\
\cdot, y \mapsto 4;3 + y \Downarrow 7 & \quad \text{Add} \\
\cdot, y \mapsto 4;5 \Downarrow 5 & \quad \text{Const} \\
\cdot, y \mapsto 4;(3 + y) + 5 \Downarrow 12 & \quad \text{Add}
\end{align*}
\]

In theorems and proofs, we write “\(H;e \Downarrow c\)” to mean “there exists a derivation with \(H;e \Downarrow c\) at the root”.

Relations

What relation do our inference rules define?

- Let R_0 be the empty relation (no triples).
- For $i > 0$, let R_i be R_{i-1} union all $H;e \Downarrow c$ such that we can instantiate some inference rule to have conclusion $H;e \Downarrow c$ and all its hypotheses in R_{i-1}.
- R_i is all triples at the bottom of height-j complete derivations for $j \leq i$.
- Let $R_\infty = \bigcup_{i \geq 0} R_i$. This is the relation we defined.
- R_∞ is all triples at the bottom of complete derivations.

For the math folks:

R_∞ is the *smallest* relation *closed* under the inference rules.
What are these things?

We can view the inference rules as defining an **interpreter**.

- Complete derivation shows *(recursive)* calls to the “eval exp” function.
 - Recursive calls from conclusion to hypotheses.
 - Syntax-directed means the interpreter need not “search” or “guess”.

- See SML code in next lecture and Homework 2.

Or we can view the inference rules as defining a **proof system**.

- Complete derivation proves facts *(from other facts)* starting with axioms.
 - Facts established from hypotheses to conclusions.

Note: Our semantics is **syntax-directed**.

- Exactly one inference rule for each variant of syntax.
On to statements

A statement doesn't produce an integer constant.
On to statements

A statement doesn't produce an integer constant.

It produces a new, possibly different, heap.

▶ If it terminates.
On to statements

A statement doesn't produce an integer constant.

It produces a new, possibly different, heap.

▶ If it terminates.

We could define $H_1; s \downarrow H_2$.

▶ Would be a partial function from H_1 and s to H_2.
 ▶ When would it not be defined?

▶ Works fine; could be a homework problem.
On to statements

A statement doesn't produce an integer constant. It produces a new, possibly different, heap.

▶ If it terminates.

We could define $H_1; s \downarrow H_2$.

▶ Would be a partial function from H_1 and s to H_2.
 ▶ When would it not be defined?
▶ Works fine; could be a homework problem.

Instead, we will define a “small-step” semantics and then “iterate” to “run the program”.

\[H_1; s_1 \rightarrow H_2; s_2 \]
Statement semantics

\[H_1; s_1 \rightarrow H_2; s_2 \]

ASSIGN

\[
\begin{align*}
H; e & \Downarrow c \\
H; x := e & \rightarrow H, x \mapsto c; \text{skip}
\end{align*}
\]

SEQSKIP

\[
\begin{align*}
H; \text{skip} & ; s \rightarrow H; s
\end{align*}
\]

SEQSTEP

\[
\begin{align*}
H; s_1 & \rightarrow H'; s'_1 \\
H; s_1 & ; s_2 \rightarrow H'; s'_1 & ; s_2
\end{align*}
\]

IFT

\[
\begin{align*}
H; e & \Downarrow c \\
& c > 0 \\
H; \text{if } e & s_1 s_2 \rightarrow H; s_1
\end{align*}
\]

IFF

\[
\begin{align*}
H; e & \Downarrow c \\
& c \leq 0 \\
H; \text{if } e & s_1 s_2 \rightarrow H; s_2
\end{align*}
\]
Statement semantics (cont’d)

What about `while e s`?

- Intuitively, do `s` and loop if `e > 0`.

\[
\begin{align*}
\text{WHILE} \\
H; \text{while } e \ s \rightarrow H; \text{if } e (s \ ; \ \text{while } e \ s) \ \text{skip}
\end{align*}
\]

Many other equivalent definitions possible.
Program semantics

Defined $H;s \rightarrow H';s'$, but what does a whole program "s" mean/do?

Iterate:

\[
H_1;s_1 \rightarrow H_2;s_2 \rightarrow H_3;s_3 \rightarrow \cdots
\]

with each step justified by a complete derivation using our single-step statement semantics.
Program semantics (cont’d)

Let $H_1; s_1 \rightarrow^n H_2; s_2$ mean “$H_1; s_1$ becomes $H_2; s_2$ after n steps”.

Let $H_1; s_1 \rightarrow^* H_2; s_2$ mean “$H_1; s_1$ becomes $H_2; s_2$ after 0 or more steps”.

“there exists some n such that $H_1; s_1 \rightarrow^n H_2; s_2$”

Pick a special “answer” variable ans.

The program s produces c if $\cdot; s \rightarrow^* H; \text{skip}$ and $H(\text{ans}) = c$.

Does every s produce a c?
Example program execution

\[x := 3 \; \; (y := 1 \; \; \textbf{while} \; x \; (y := y \ast x \; ; \; x := x + -1)) \]

Let’s write some of the state sequence.
You can justify each step with a full derivation.
Let \(s = (y := y \ast x \; ; \; x := x + -1) \).

\[\cdot \; \cdot \; ; \; x := 3 \; \; (y := 1 \; \; \textbf{while} \; x \; s) \]
Example program execution

\[
x := 3 \ ; \ (y := 1 \ ; \ \text{while} \ x \ (y := y \times x \ ; \ x := x + -1))
\]

Let’s write some of the state sequence.
You can justify each step with a full derivation.
Let \(s = (y := y \times x \ ; \ x := x + -1) \).

\[
\cdot \ ; \ x := 3 \ ; \ (y := 1 \ ; \ \text{while} \ x \ s)
\]

\[
\begin{array}{c}
\text{ASSIGN} \\
\text{SEQSTEP}
\end{array}
\quad \rightarrow \\
\begin{array}{c}
\cdot, x \mapsto 3 \ ; \ \text{skip} \ ; \ (y := 1 \ ; \ \text{while} \ x \ s)
\end{array}
\]
Example program execution

\[
x := 3 \; (y := 1 \; \text{while } x \; (y := y \times x \; x := x + -1))
\]

Let's write some of the state sequence.
You can justify each step with a full derivation.
Let \(s = (y := y \times x \; x := x + -1) \).

\[
\cdot \; x := 3 \; (y := 1 \; \text{while } x \; s)
\]

\[
\begin{array}{c}
\text{ASSIGN} \\
\text{SEQSTEP} \\
\text{SEQSkip}
\end{array}
\quad \rightarrow \\
\cdot, x \mapsto 3 \; \text{skip} \; (y := 1 \; \text{while } x \; s)
\]

\[
\cdot, x \mapsto 3 \; y := 1 \; \text{while } x \; s
\]
Example program execution

\[
x := 3 ; (y := 1 ; \textbf{while} \ x \ (y := y \times x ; x := x + -1))
\]

Let’s write some of the state sequence.
You can justify each step with a full derivation.
Let \(s = (y := y \times x ; x := x + -1) \).

\[
\begin{align*}
\text{assign} & \quad \Rightarrow \quad \cdot; x := 3 ; (y := 1 ; \textbf{while} \ x \ s) \\
\text{seqStep} & \quad \Rightarrow \quad \cdot, x \leftrightarrow 3 ; \textbf{skip} ; (y := 1 ; \textbf{while} \ x \ s) \\
\text{seqSkip} & \quad \Rightarrow \quad \cdot, x \leftrightarrow 3 ; y := 1 ; \textbf{while} \ x \ s \\
\text{assign} & \quad \Rightarrow \quad \cdot, x \leftrightarrow 3, y \leftrightarrow 1 ; \textbf{skip} ; \textbf{while} \ x \ s
\end{align*}
\]
Example program execution

\[
x := 3 ; (y := 1 ; \textbf{while } x \ (y := y * x ; x := x + -1))
\]

Let’s write some of the state sequence.
You can justify each step with a full derivation.
Let \(s = (y := y * x ; x := x + -1) \).

\[
\cdot ; x := 3 ; (y := 1 ; \textbf{while } x \ s)
\]

\[
\text{ASSIGN}_{\text{SEQSTEP}} \quad \rightarrow \quad \cdot, x \mapsto 3 ; \textbf{skip} ; (y := 1 ; \textbf{while } x \ s)
\]

\[
\text{SEQSKIP} \quad \rightarrow \quad \cdot, x \mapsto 3 ; y := 1 ; \textbf{while } x \ s
\]

\[
\text{ASSIGN}_{\text{SEQSTEP}} \quad \rightarrow \quad \cdot, x \mapsto 3, y \mapsto 1 ; \textbf{skip} ; \textbf{while } x \ s
\]

\[
\text{SEQSKIP} \quad \rightarrow \quad \cdot, x \mapsto 3, y \mapsto 1 ; \textbf{while } x \ s
\]
Example program execution

\[x := 3 ; (y := 1 ; \text{while } x (y := y \ast x ; x := x + -1)) \]

Let’s write some of the state sequence.
You can justify each step with a full derivation.
Let \(s = (y := y \ast x ; x := x + -1) \).

\[
\begin{align*}
\cdot ; x & := 3 ; (y := 1 ; \text{while } x \ s) \\
\text{ASSIGN} & \rightarrow \cdot, x \mapsto 3 ; \text{skip} ; (y := 1 ; \text{while } x \ s) \\
\text{SEQSTEP} & \rightarrow \cdot, x \mapsto 3 ; y := 1 ; \text{while } x \ s \\
\text{SEQSKIP} & \rightarrow \cdot, x \mapsto 3, y \mapsto 1 ; \text{skip} ; \text{while } x \ s \\
\text{ASSIGN} & \rightarrow \cdot, x \mapsto 3, y \mapsto 1 ; \text{while } x \ s \\
\text{SEQSTEP} & \rightarrow \cdot, x \mapsto 3, y \mapsto 1 ; \text{if } x (s \ ; \text{while } x \ s) \ \text{skip}
\end{align*}
\]
Example program execution (cont’d)

WHILE → ·, x ↦→ 3, y ↦→ 1; if x (s ; while x s) skip
Example program execution (cont’d)

\[
\text{WHILE} \quad \rightarrow \quad \cdot, x \mapsto 3, y \mapsto 1; \quad \text{if } x (s; \text{while } x s) \text{ skip}
\]

\[
\text{IFT} \quad \rightarrow \quad \cdot, x \mapsto 3, y \mapsto 1; \quad (y := y \times x; x := x + 1); \quad \text{while } x s
\]
Example program execution (cont’d)

\[
\begin{align*}
\text{WHILE} & \quad \rightarrow \quad \cdot, x \mapsto 3, y \mapsto 1; \text{if } x (s; \text{while } x \ s) \text{ skip} \\
\text{IFT} & \quad \rightarrow \quad \cdot, x \mapsto 3, y \mapsto 1; (y := y * x; x := x + -1); \text{while } x \ s \\
\text{ASSIGN}_{\text{SEQSTEP}} & \quad \rightarrow \quad \cdot, x \mapsto 3, y \mapsto 1, y \mapsto 3; (\text{skip}; x := x + -1); \text{while } x \ s \\
\text{SEQSTEP} & \quad \rightarrow \quad \cdot, x \mapsto 3, y \mapsto 1; \text{if } x (s; \text{while } x \ s) \text{ skip} \\
\end{align*}
\]
Example program execution (cont’d)

\[
\begin{align*}
\text{WHILE} & \quad \rightarrow \quad \cdot, x \mapsto 3, y \mapsto 1; \text{if } x \left(s ; \text{while } x \ s \right) \text{ skip} \\
\text{IFT} & \quad \rightarrow \quad \cdot, x \mapsto 3, y \mapsto 1; (y := y \ast x ; x := x + -1) ; \text{while } x \ s \\
\text{ASSIGN} & \quad \rightarrow \quad \cdot, x \mapsto 3, y \mapsto 1, y \mapsto 3 ; (\text{skip} ; x := x + -1) ; \text{while } x \ s \\
\text{SEQSTEP} & \quad \rightarrow \quad \cdot, x \mapsto 3, y \mapsto 1, y \mapsto 3 ; x := x + -1 ; \text{while } x \ s
\end{align*}
\]
Example program execution (cont’d)

```
WHILE → ·, x ↦→ 3, y ↦→ 1 ; if x (s ; while x s) skip
IFT  → ·, x ↦→ 3, y ↦→ 1 ; (y := y * x ; x := x + -1) ; while x s

ASSIGN
SEQSTEP
→ ·, x ↦→ 3, y ↦→ 1, y ↦→ 3 ; (skip ; x := x + -1) ; while x s

SEQSTEP
→ ·, x ↦→ 3, y ↦→ 1, y ↦→ 3 ; x := x + -1 ; while x s

ASSIGN
SEQSTEP
→ ·, x ↦→ 3, y ↦→ 1, y ↦→ 3, x ↦→ 2 ; skip ; while x s
```
Example program execution (cont’d)

\[
\begin{align*}
\text{WHILE} & \rightarrow \cdot, x \mapsto 3, y \mapsto 1; \text{if } x (s ; \text{while } x \ s) \text{ skip} \\
\text{IFT} & \rightarrow \cdot, x \mapsto 3, y \mapsto 1; (y := y \ast x ; x := x + -1) ; \text{while } x \ s \\
\text{ASSIGN} \quad \text{SEQSTEP} & \rightarrow \cdot, x \mapsto 3, y \mapsto 1, y \mapsto 3 ; (\text{skip} ; x := x + -1) ; \text{while } x \ s \\
\text{SEQSTEP} & \rightarrow \cdot, x \mapsto 3, y \mapsto 1, y \mapsto 3 ; x := x + -1 ; \text{while } x \ s \\
\text{ASSIGN} \quad \text{SEQSTEP} & \rightarrow \cdot, x \mapsto 3, y \mapsto 1, y \mapsto 3, x \mapsto 2 ; \text{skip} ; \text{while } x \ s \\
\text{SEQSTEP} & \rightarrow \cdot, x \mapsto 3, y \mapsto 1, y \mapsto 3, x \mapsto 2 ; \text{while } x \ s
\end{align*}
\]
Example program execution (cont’d)

\[\text{WHILE} \quad \rightarrow \quad \cdot, x \mapsto 3, y \mapsto 1 ; \text{if } x (s ; \text{while } x s) \text{ skip}\]

\[\text{IFT} \quad \rightarrow \quad \cdot, x \mapsto 3, y \mapsto 1 ; (y := y \times x ; x := x + -1) ; \text{while } x s\]

\[\text{ASSIGN} \quad \rightarrow \quad \cdot, x \mapsto 3, y \mapsto 1, y \mapsto 3 ; (\text{skip} ; x := x + -1) ; \text{while } x s\]

\[\text{SEQSTEP} \quad \rightarrow \quad \cdot, x \mapsto 3, y \mapsto 1, y \mapsto 3 ; x := x + -1 ; \text{while } x s\]

\[\text{SEQSTEP} \quad \rightarrow \quad \cdot, x \mapsto 3, y \mapsto 1, y \mapsto 3, x \mapsto 2 ; \text{skip} ; \text{while } x s\]

\[\text{SEQSTEP} \quad \rightarrow \quad \cdot, x \mapsto 3, y \mapsto 1, y \mapsto 3, x \mapsto 2 ; \text{while } x s\]

\[\text{SEQSTEP} \quad \rightarrow \quad \ldots, y \mapsto 3, x \mapsto 2 ; \text{if } x (s ; \text{while } x s) \text{ skip}\]

\[\ldots\]
Example program execution (cont’d)

\[
\text{WHILE} \quad \rightarrow \quad _, \; x \leftrightarrow 3, \; y \leftrightarrow 1 \; ; \; \text{if } x \; (s \; ; \; \text{while } x \; s) \; \text{skip}
\]

\[
\text{IF} \quad \rightarrow \quad _, \; x \leftrightarrow 3, \; y \leftrightarrow 1 \; ; \; (y := y * x \; ; \; x := x + -1) \; ; \; \text{while } x \; s
\]

\[
\text{ASSIGN SEQSTEP} \quad \rightarrow \quad _, \; x \leftrightarrow 3, \; y \leftrightarrow 1, \; y \leftrightarrow 3 \; ; \; (\text{skip} \; ; \; x := x + -1) \; ; \; \text{while } x \; s
\]

\[
\text{SEQ Skip SEQ Step} \quad \rightarrow \quad _, \; x \leftrightarrow 3, \; y \leftrightarrow 1, \; y \leftrightarrow 3 \; ; \; x := x + -1 \; ; \; \text{while } x \; s
\]

\[
\text{ASSIGN SEQSTEP} \quad \rightarrow \quad _, \; x \leftrightarrow 3, \; y \leftrightarrow 1, \; y \leftrightarrow 3, \; x \leftrightarrow 2 \; ; \; \text{skip} \; ; \; \text{while } x \; s
\]

\[
\text{SEQ Skip} \quad \rightarrow \quad _, \; x \leftrightarrow 3, \; y \leftrightarrow 1, \; y \leftrightarrow 3, \; x \leftrightarrow 2 \; ; \; \text{while } x \; s
\]

\[
\text{WHILE} \quad \rightarrow \quad \ldots, \; y \leftrightarrow 3, \; x \leftrightarrow 2 \; ; \; \text{if } x \; (s \; ; \; \text{while } x \; s) \; \text{skip}
\]

\[
\ldots
\]

\[
\rightarrow \quad \ldots, \; y \leftrightarrow 6, \; x \leftrightarrow 0 \; ; \; \text{skip}
\]
Where we are

We have defined $H;e \downarrow c$ and $H;s \rightarrow H';s'$
and extended the latter to give a whole program s a meaning.

We have used “operational semantics”:

- Definition by interpretation:
 - program means what an interpreter (written in a metalanguage) says it means
 - interpreter for an abstract machine (sometimes, very abstract)
- The way we did expressions is “large-step” (or, “natural”)
- The way we did statements is “small-step” (or, “structured”)

Matthew Fluet
Programming Language Theory
Lecture 03 20
Where we are

We have defined $H;e \downarrow c$ and $H;s \rightarrow H';s'$
and extended the latter to give a whole program s a meaning.

We have used “operational semantics”:

- Definition by interpretation:
 - program means what an interpreter (written in a metalanguage) says it means
 - interpreter for an abstract machine (sometimes, very abstract)
- The way we did expressions is “large-step” (or, “natural”)
- The way we did statements is “small-step” (or, “structured”)

Large-step does not distinguish errors and divergence.

- But we defined IMP to have no errors
- And expressions never diverge

Large-step simpler than small-step when appropriate.
Judgements and Inference Rules

There is a lot of convention built into judgements and inference rules:

▶ conclusion must be a judgement
▶ hypotheses must be judgements or logical formulae
▶ judgements in conclusion or hypotheses may be constrained to elements of a specific syntactic form
▶ metavariables that appear in conclusion are \forall quantified
▶ metavariables that do not appear in conclusion are \exists quantified
▶ repeated metavariables are the “same”
▶ contrast with BNF, where repeated metavariables are “different”
Judgements and Inference Rules

This,

\[
\begin{align*}
\text{ADD} & & \quad \text{ADD} \\
H; e_1 \downarrow c_1 & \quad H; e_2 \downarrow c_2 \\
\hline \\
H; e_1 + e_2 \downarrow c_1 + c_2
\end{align*}
\]

is equivalent to

\[
\begin{align*}
\text{ADD} & & e = e_1 + e_2 \\
H; e_1 \downarrow c_1 & \quad H; e_2 \downarrow c_2 & \quad c = c_1 + c_2 \\
\hline \\
H; e \downarrow c
\end{align*}
\]

which is read:

For all heaps H, expressions e, and constants c, if there exist expressions e_1 and e_2 and constants c_1 and c_2 and $e = e_1 + e_2$, $H; e_1 \downarrow c_1$, $H; e_2 \downarrow c_2$, and $c = c_1 + c_2$ are all true (provable), then $H; e \downarrow c$ is true (provable).
Judgements and Inference Rules

There is a lot of convention built into judgements and inference rules:

- conclusion must be a judgement
- hypotheses must be judgements or logical formulae
- judgements in conclusion or hypotheses may be constrained to elements of a specific syntactic form
- metavariables that appear in conclusion are \forall quantified
- metavariables that do not appear in conclusion are \exists quantified
- repeated metavariables are the “same”
 - contrast with BNF, where repeated metavariables are “different”
Judgements and Inference Rules

Judgements and inference rules are versatile PL notation.

Could have defined syntax
using a judgement and inference rules:

\[e \quad \text{exp} \]

\[
\begin{array}{c}
\text{c \quad \text{exp}} \\
\hline
\end{array}
\quad \begin{array}{c}
\text{x \quad \text{exp}} \\
\hline
\end{array}\\n\]

\[
\begin{array}{c}
e_1 \quad \text{exp} \quad e_2 \quad \text{exp} \\
\hline
\end{array}
\quad \begin{array}{c}
e_1 \quad \text{exp} \quad e_2 \quad \text{exp} \\
\hline
\end{array}\\n\]

\[
\begin{array}{c}
e_1 + e_2 \quad \text{exp} \\
\hline
\end{array}
\quad \begin{array}{c}
e_1 \times e_2 \quad \text{exp} \\
\hline
\end{array}\\n\]
Judgements and Inference Rules

Judgements and inference rules are versatile PL notation.

Could have defined heap lookup using a judgement and inference rules:

\[
H \oplus x \leadsto c
\]

EMPTY

\[
\cdot \oplus x \leadsto 0
\]

HIT

\[
H', x \mapsto c \oplus x \leadsto c
\]

MISS

\[
x \neq y' \quad H' \oplus x \leadsto c
\]

\[
H', y' \mapsto c' \oplus x \leadsto c
\]
Judgements and Inference Rules

Judgements and inference rules are versatile PL notation.

Could have defined multi-step statement semantics using judgements and inference rules:

\[H_1; s_1 \rightarrow^n H_2; s_2 \]

\[H_1; s_1 \rightarrow^n H_2; s_2 \quad H_2; s_2 \rightarrow H_3; s_3 \]

\[H_1; s_1 \rightarrow^n H_2; s_2 \quad H_2; s_2 \rightarrow H_3; s_3 \]

Note: With these inference rules, complete derivations of \(H_1; s_1 \rightarrow^* H_2; s_2 \) are unique.
Judgements and Inference Rules

Judgements and inference rules are versatile PL notation.

Could have defined multi-step statement semantics using judgements and inference rules:

\[H_1; s_1 \rightarrow^* H_2; s_2 \]

\[\frac{H; s \rightarrow^* H; s}{H; s \rightarrow^* H; s} \quad \frac{H_1; s_1 \rightarrow^* H_2; s_2}{H_1; s_1 \rightarrow^* H_3; s_3} \quad \frac{H_2; s_2 \rightarrow^* H_3; s_3}{H_1; s_1 \rightarrow^* H_3; s_3} \]

\[\frac{H_1; s_1 \rightarrow H_2; s_2}{H_1; s_1 \rightarrow^* H_2; s_2} \]

Note: With these inference rules, complete derivations of \(H_1; s_1 \rightarrow^* H_2; s_2 \) are not unique.
Judgements and Inference Rules

Judgements and inference rules are versatile PL notation.

Could have defined program semantics using a judgement and inference rule:

\[s \rightarrow^* c \]

\[
\begin{align*}
\cdot; s & \rightarrow^* H; \text{skip} & H @ \text{ans} & \sim c \\
\hline
s & \rightarrow^* c
\end{align*}
\]
Review: **IMP** abstract syntax (programs and heaps)

\[
\begin{align*}
 s & ::= \quad x := e \mid \text{skip} \mid s ; s \mid \text{if } e \text{ } s \text{ } s \mid \text{while } e \text{ } s \\
 e & ::= \quad c \mid x \mid e + e \mid e * e \\
 (c & \in \{\ldots, -2, -1, 0, 1, 2, \ldots\}) \\
 (x & \in \{x_1, x_2, \ldots, y_1, y_2, \ldots, z_1, z_2, \ldots, \ldots\})
\end{align*}
\]

\[
H ::= \quad \cdot \mid H, x \mapsto c
\]
Review: **IMP** judgement for heap lookup

\[H \oplus x \rightsquigarrow c \]

EMPTY

\[
\cdot \oplus x \rightsquigarrow 0
\]

HIT

\[
H', x \mapsto c \oplus x \rightsquigarrow c
\]

MISS

\[
x \neq y' \\
H' \oplus x \rightsquigarrow c \\
H', y' \mapsto c' \oplus x \rightsquigarrow c
\]
Review: IMP operational semantics for expressions (big-step)

\[H; e \Downarrow c \]

CONST
\[
\begin{array}{c}
| \hspace{1cm} H; c \Downarrow c |
\end{array}
\]

VAR
\[
\begin{array}{c}
| \hspace{1cm} H \odot x \leadsto c |
\end{array}
\]

ADD
\[
\begin{array}{c}
| \hspace{1cm} H; e_1 \Downarrow c_1 \quad H; e_2 \Downarrow c_2 |
\end{array}
\]
\[
\begin{array}{c}
| \hspace{1cm} H; e_1 + e_2 \Downarrow c_1 + c_2 |
\end{array}
\]

MULT
\[
\begin{array}{c}
| \hspace{1cm} H; e_1 \Downarrow c_1 \quad H; e_2 \Downarrow c_2 |
\end{array}
\]
\[
\begin{array}{c}
| \hspace{1cm} H; e_1 \ast e_2 \Downarrow c_1 \ast c_2 |
\end{array}
\]
Review: **IMP** operational semantics for statements (small-step)

\[
H_1; s_1 \rightarrow H_2; s_2
\]

ASSIGN

\[
\frac{H; e \Downarrow c}{H; x := e \rightarrow H, \ x \mapsto c; \text{skip}}
\]

WHILE

\[
\frac{H; \text{while } e \ s \rightarrow \ H; \text{if } e (s ; \text{while } e \ s) \text{ skip}}{H; \text{if } e \ s \rightarrow}
\]

SEQ_SKIP

\[
\frac{H; \text{skip } ; \ s \rightarrow H; s}{H; s_1 \rightarrow H; s}
\]

SEQ_STEP

\[
\frac{H; s_1 \rightarrow H'; s_1'}{H; s_1 ; \ s_2 \rightarrow H'; s_1' ; \ s_2}
\]

IFT

\[
\frac{H; e \Downarrow c \quad c > 0}{H; \text{if } e \ s_1 \ s_2 \rightarrow H; s_1}
\]

IFF

\[
\frac{H; e \Downarrow c \quad c \leq 0}{H; \text{if } e \ s_1 \ s_2 \rightarrow H; s_2}
\]
Preview: Establishing properties about all expressions

We can prove properties about all expressions (i.e., about IMP):

▶ Progress:

For all H and e, there exists c such that $H;e \downarrow c$.

▶ Determinacy:

For all H, e, c_1, and c_2,

if $H;e \downarrow c_1$ and $H;e \downarrow c_2$, then $c_1 = c_2$.

We rigged it that way...

▶ What would division, undefined variables, or rand() do?

Proofs are by induction on the the structure of the expression e.

▶ Proofs require lemmas for “progress” and “determinacy” of heaps.

▶ Details in a few lectures and Homework 3.
Preview: Establishing properties about a program

We can prove a property about a terminating program by “running” it.

Example: Our last program terminates with x holding 0.
We can prove a property about a terminating program by “running” it.

Example: Our last program terminates with x holding 0.

We can prove that a program s diverges:

- for all H and n, $\cdot; s \rightarrow^n H; \text{skip}$ cannot be derived.

Example: while 1 skip
Preview: Establishing properties about a program

We can prove a property about a terminating program by “running” it.

Example: Our last program terminates with \(x \) holding 0.

We can prove that a program \(s \) diverges:

- for all \(H \) and \(n \), \(\cdot; s \rightarrow^n H; \text{skip} \) cannot be derived.

Example: while 1 skip

Proof is by induction on \(n \) with a stronger induction hypothesis:
If we can derive \(\cdot; \text{while 1 skip} \rightarrow^n \cdot; s' \)
then \(s' \) is while 1 skip
or \(s' \) is if 1 (skip ; while 1 skip) skip
or \(s' \) is skip ; while 1 skip.

Details in a few lectures.
Establishing properties about all programs

We can prove properties about all programs (i.e., about IMP):

► Progress:

For all H and s, there exists H' and s' such that $H; s \rightarrow H'; s'$.

► Determinacy:

For all H, s, H'_1, s'_1, H'_2, and s'_2, if $H; s \rightarrow H'_1; s'_1$ and $H; s \rightarrow H'_2; s'_2$, then $H'_1 = H'_2$ and $s'_1 = s'_2$.
Establishing properties about all programs

We can prove properties about all programs (i.e., about **IMP**):

- **Progress:**

 For all \(H \) and \(s \), there exists \(H' \) and \(s' \) such that \(H;s \rightarrow H';s' \).

- **Determinacy:**

 For all \(H, s, H'_1, s'_1, H'_2, \) and \(s'_2 \),

 if \(H;s \rightarrow H'_1;s'_1 \) and \(H;s \rightarrow H'_2;s'_2 \), then \(H'_1 = H'_2 \) and \(s'_1 = s'_2 \).

One of these properties is not true...
Establishing properties about all programs

We can prove properties about all programs (i.e., about IMP):

▶ Progress:

For all H and s, there exists H' and s' such that $H; s \rightarrow H'; s'$.

▶ Determinacy:

For all H, s, H'_1, s'_1, H'_2, and s'_2,

if $H; s \rightarrow H'_1; s'_1$ and $H; s \rightarrow H'_2; s'_2$, then $H'_1 = H'_2$ and $s'_1 = s'_2$.

One of these properties is not true…
Establishing properties about all programs

We can prove properties about all programs (satisfying a property).
Establishing properties about all programs

We can prove properties about all programs (satisfying a property).

Example: If H and s have no negative constants and $H; s \rightarrow H'; s'$, then H' and s' have no negative constants.
Establishing properties about all programs

We can prove properties about all programs (satisfying a property).

Example: If H and s have no negative constants and $H; s \rightarrow H'; s'$, then H' and s' have no negative constants.

Proof is by structural induction on the derivation $H; s \rightarrow H'; s'$. Details next time.
Establishing properties about all programs

We can prove properties about all programs (satisfying a property).

Example: If H and s have no negative constants and $H; s \rightarrow H'; s'$, then H' and s' have no negative constants.

Proof is by structural induction on the derivation $H; s \rightarrow H'; s'$. Details next time.

Example: If for all H, we know s_1 and s_2 terminate, then for all H, we know $s_1; s_2$ terminates.
Establishing properties about all programs

We can prove properties about all programs (satisfying a property).

Example: If H and s have no negative constants and $H; s \rightarrow H'; s'$, then H' and s' have no negative constants.

Proof is by structural induction on the derivation $H; s \rightarrow H'; s'$. Details next time.

Example: If for all H, we know s_1 and s_2 terminate, then for all H, we know $s_1 ; s_2$ terminates.

Proof is almost direct (but needs a lemma).

$$ H; s_1 ; s_2 \rightarrow^* H'; \text{skip} ; s_2 \rightarrow H'; s_2 \rightarrow^* H''; \text{skip} $$