Programming Language Theory

Operational Semantics for IMP
Looking back, looking forward

► Done: **IMP** syntax, structural induction

► Today: **IMP** operational semantics
 ► One of the two or three most important lectures of course

► Tonight: You could (almost?) finish Homework 1
Review: **IMP** abstract syntax

IMP’s abstract syntax is defined inductively (using BNF):

\[
s \ ::= \ x := e \mid \text{skip} \mid s ; s \mid \text{if } e \ s \ s \mid \text{while } e \ s
\]

\[
e \ ::= \ c \mid x \mid e + e \mid e \ast e
\]

\[
(c \in \{\ldots, -2, -1, 0, 1, 2, \ldots\})
\]

\[
(x \in \{x_1, x_2, \ldots, y_1, y_2, \ldots, z_1, z_2, \ldots, \ldots\})
\]

We haven’t yet said what programs *mean*! (Syntax is boring)

Encode our “social understanding” about variables and control flow.

Emphasis on “social understanding”:

- we define the meaning of a program language
- the meaning of a programming language is not dictated
Outline

- Semantics for expressions
 - Informal idea; the need for heaps
 - Definition of heaps
 - The evaluation *judgement* (a relation form)
 - The evaluation *inference rules* (the relation definition)
 - Using inference rules
 - *Derivation trees* as interpreters
 - Or as *proofs* about expressions
 - *Metatheory*: Proofs about the semantics

- Then semantics for statements
 - (rinse and repeat)
Informal idea

Given expression e, what integer c does it evaluate to?

$1 + 2$ \hspace{2cm} $x + 2$
Informal idea

Given expression e, what integer c does it evaluate to?

\[
1 + 2 \quad x + 2
\]

It depends on the values of variables (of course).

Use a heap H to encode a total function from variables to constants.

- Could use partial functions,
 but then $\exists H$ and e for which there is no c

We’ll define a relation over triples of H, e, and c.

- Will turn out to be a (total) function
 if we view H and e as inputs and c as output.
- With our metalanguage, it is easier to define a relation
 and then prove that it is a function (if, in fact, it is).
Heaps

An abstract syntax for heaps:

\[H ::= \cdot | H, x \mapsto c \]

Describe heaps as a data structure.

A lookup-function for heaps:

\[H(x) = \begin{cases}
 c & \text{if } H = H', x \mapsto c \\
 H'(x) & \text{if } H = H', y \mapsto c \text{ and } x \neq y \\
 0 & \text{if } H = \cdot
\end{cases} \]

Last case avoids “errors” (makes the function total)

“What heap to use” will arise in the semantics of statements

- For expression evaluation, “we are given an \(H \)”
The judgement

We will write:

\[H; e \downarrow c \]

to mean “\(e \) evaluates to \(c \) under heap \(H \)”.

We just made up metasyntax \(H; e \downarrow c \) to follow PL convention and to distinguish it from other relations.

It is just a relation on triples of the form \((H, e, c)\).
The judgement

We will write:

\[H;e \Downarrow c \]

to mean \textit{“} \(e \) evaluates to \(c \) under heap \(H \)\textit{”}.

We just made up metasyntax \(H;e \Downarrow c \) to follow PL convention and to distinguish it from other relations.

It is just a relation on triples of the form \((H, e, c) \).

We can write \(\cdot, x \mapsto 3; x + y \Downarrow 3 \), which will turn out to be \textit{true} (this triple will be in the relation we define).

Or \(\cdot, x \mapsto 3; x + y \Downarrow 6 \), which will turn out to be \textit{false} (this triple will not be in the relation we define).
Inference rules

CONST

\[
\begin{array}{c}
H; c \Downarrow c
\end{array}
\]

VAR

\[
\begin{array}{c}
H; x \Downarrow H(x)
\end{array}
\]

ADD

\[
\begin{array}{c}
H; e_1 \Downarrow c_1 \quad H; e_2 \Downarrow c_2
\end{array}
\]

\[
H; e_1 + e_2 \Downarrow c_1 + c_2
\]

MULT

\[
\begin{array}{c}
H; e_1 \Downarrow c_1 \quad H; e_2 \Downarrow c_2
\end{array}
\]

\[
H; e_1 * e_2 \Downarrow c_1 * c_2
\]

Top: hypotheses
Bottom: conclusion

By definition, if all hypotheses hold, then the conclusion holds.

Each rule is a *schema* that you “instantiate consistently”:

- Rules “work” “for all” \(H, c, e_1 \), etc.
- But “each” \(e_1 \) has to be the “same” expression.
Instantiating rules

Example instantiation:

\[
\begin{align*}
\bullet, y \mapsto 4;3 + y & \Downarrow 7 & \bullet, y \mapsto 4;5 & \Downarrow 5 \\
\bullet, y \mapsto 4;(3 + y) + 5 & \Downarrow 12
\end{align*}
\]

ADD

Instantiates:

\[
\begin{align*}
\text{ADD} & \\
H;e_1 & \Downarrow c_1 & H;e_2 & \Downarrow c_2 \\
H;e_1 + e_2 & \Downarrow c_1 + c_2
\end{align*}
\]

with:

\[
\begin{align*}
H &= \bullet, y \mapsto 4 \\
e_1 &= 3 + y & c_1 &= 7 \\
e_2 &= 5 & c_2 &= 5
\end{align*}
\]
Derivations

A (complete) derivation is a tree of instantiations with axioms at the leaves.

Example:

\[
\begin{align*}
\cdot, y \mapsto 4;3 & \downarrow 3 & \text{CONST} \quad & \cdot, y \mapsto 4;y & \downarrow 4 & \text{VAR} \\
\cdot, y \mapsto 4;3 + y & \downarrow 7 & \text{ADD} \quad & \cdot, y \mapsto 4;5 & \downarrow 5 & \text{CONST} \\
\cdot, y \mapsto 4;(3 + y) + 5 & \downarrow 12 & \text{ADD}
\end{align*}
\]

In theorems and proofs, we write “\(H;e \downarrow c \)” to mean “there exists a derivation with \(H;e \downarrow c \) at the root”.
Relations

What relation do our inference rules define?

- Let R_0 be the empty relation (no triples).
- For $i > 0$, let R_i be R_{i-1} union all $H;e \Downarrow c$ such that we can instantiate some inference rule to have conclusion $H;e \Downarrow c$ and all its hypotheses in R_{i-1}.
- R_i is all triples at the bottom of height-j complete derivations for $j \leq i$.
- Let $R_\infty = \bigcup_{i \geq 0} R_i$. This is the relation we defined.
- R_∞ is all triples at the bottom of complete derivations.

For the math folks:

R_∞ is the smallest relation closed under the inference rules.
What are these things?

We can view the inference rules as defining an *interpreter*.

- Complete derivation shows \textit{(recursive)} calls to the “eval exp” function.
 - Recursive calls from conclusion to hypotheses.
 - Syntax-directed means the interpreter need not “search” or “guess”.

- See SML code in next lecture and Homework 2.

Or we can view the inference rules as defining a *proof system*.

- Complete derivation proves facts \textit{(from other facts)} starting with axioms.
 - Facts established from hypotheses to conclusions.

Note: Our semantics is *syntax-directed*.

- Exactly one inference rule for each variant of syntax.
On to statements

A statement doesn't produce an integer constant.
On to statements

A statement doesn't produce an integer constant.

It produces a new, possibly different, heap.

▶ If it terminates.

Would be a partial function from H_1 and s to H_2. When would it not be defined?

Works fine; could be a homework problem. Instead, we will define a "small-step" semantics and then "iterate" to "run the program".

$H_1; s \xrightarrow{\cdot} H_2; s_2$
On to statements

A statement doesn't produce an integer constant.

It produces a new, possibly different, heap.

▶ If it terminates.

We could define $H_1; s \Downarrow H_2$.

▶ Would be a partial function from H_1 and s to H_2.
 ▶ When would it not be defined?

▶ Works fine; could be a homework problem.
On to statements

A statement doesn't produce an integer constant.

It produces a new, possibly different, heap.

▶ If it terminates.

We could define \(H_1; s \downarrow H_2 \).

▶ Would be a partial function from \(H_1 \) and \(s \) to \(H_2 \).

▶ When would it not be defined?

▶ Works fine; could be a homework problem.

Instead, we will define a “small-step” semantics and then “iterate” to “run the program”.

\[
H_1; s_1 \rightarrow H_2; s_2
\]
Statement semantics

\[H_1; s_1 \rightarrow H_2; s_2 \]

ASSIGN

\[
\begin{align*}
H; e & \Downarrow c \\
H; x := e & \rightarrow H, x \mapsto c; \text{skip}
\end{align*}
\]

SEQ_SKIP

\[
\begin{align*}
H; \text{skip} & ; s \rightarrow H; s
\end{align*}
\]

SEQ_STEP

\[
\begin{align*}
H; s_1 & \rightarrow H'; s'_1 \\
H; s_1 & ; s_2 \rightarrow H'; s'_1 ; s_2
\end{align*}
\]

IFT

\[
\begin{align*}
H; e & \Downarrow c, c > 0 \\
H; \text{if } e & s_1 s_2 \rightarrow H; s_1
\end{align*}
\]

IFF

\[
\begin{align*}
H; e & \Downarrow c, c \leq 0 \\
H; \text{if } e & s_1 s_2 \rightarrow H; s_2
\end{align*}
\]
Statement semantics (cont’d)

What about while e s?

- Intuitively, do s and loop if e > 0.

\[
\text{WHILE} \quad H; \text{while } e \ s \rightarrow H; \text{if } e (s ; \text{while } e \ s) \text{ skip}
\]

Many other equivalent definitions possible.
Program semantics

Defined $H; s \rightarrow H'; s'$, but what does a whole program “s” mean/do?

Iterate:

\[H_1; s_1 \rightarrow H_2; s_2 \rightarrow H_3; s_3 \rightarrow \cdots \]

with each step justified by a complete derivation using our single-step statement semantics.
Program semantics (cont’d)

Let \(H_1; s_1 \rightarrow^n H_2; s_2 \) mean “\(H_1; s_1 \) becomes \(H_2; s_2 \) after \(n \) steps”.

Let \(H_1; s_1 \rightarrow^* H_2; s_2 \) mean “\(H_1; s_1 \) becomes \(H_2; s_2 \) after 0 or more steps”.

▶ “there exists some \(n \) such that \(H_1; s_1 \rightarrow^n H_2; s_2 \)”

Pick a special “answer” variable \(\text{ans} \).

The program \(s \) produces \(c \) if \(\cdot; s \rightarrow^* \text{H;skip} \) and \(\text{H(ans)} = c \).

Does every \(s \) produce a \(c \)?
Example program execution

\[
x := 3 ; (y := 1 ; \textbf{while} x (y := y \times x ; x := x + -1))
\]

Let’s write some of the state sequence.
You can justify each step with a full derivation.
Let \(s = (y := y \times x ; x := x + -1) \).

\[
\cdot ; x := 3 ; (y := 1 ; \textbf{while} x s)
\]
Example program execution

\[
x := 3 ; (y := 1 ; \textbf{while} \ x \ (y := y \times x ; x := x + -1))
\]

Let’s write some of the state sequence. You can justify each step with a full derivation.
Let \(s = (y := y \times x ; x := x + -1) \).

\[
\cdot \ ; x := 3 \ ; (y := 1 \ ; \textbf{while} \ x \ s)
\]

\[
\frac{\text{ASSIGN}}{\text{SEQSTEP}} \quad \rightarrow \quad \cdot, x \mapsto 3 ; \textbf{skip} \ ; (y := 1 \ ; \textbf{while} \ x \ s)
\]
Example program execution

\[
x := 3 ; (y := 1 ; \textbf{while} x \ (y := y \times x ; x := x + -1))
\]

Let’s write some of the state sequence.
You can justify each step with a full derivation.
Let \(s = (y := y \times x ; x := x + -1) \).

\[
\cdot ; x := 3 ; (y := 1 ; \textbf{while} x \ s)
\]

assign

\[
\text{seqStep} \quad \rightarrow \quad \cdot, x \mapsto 3 ; \text{skip} ; (y := 1 ; \textbf{while} x \ s)
\]

seqSkip

\[
\rightarrow \quad \cdot, x \mapsto 3 ; y := 1 ; \textbf{while} x \ s
\]
Example program execution

\[x := 3 \; ; \; (y := 1 \; ; \; \text{while} \; x \; (y := y \times x \; ; \; x := x + -1)) \]

Let’s write some of the state sequence.
You can justify each step with a full derivation.
Let \(s = (y := y \times x \; ; \; x := x + -1) \).

\[
\begin{align*}
\cdot \; ; \; x := 3 \; ; \; (y := 1 \; ; \; \text{while} \; x \; s) \\
\text{ASSIGN} \quad \text{SEQSTEP} & \quad \rightarrow \quad \cdot, x \mapsto 3 \; ; \; \text{skip} \; ; \; (y := 1 \; ; \; \text{while} \; x \; s) \\
\text{SEQSKIP} & \quad \rightarrow \quad \cdot, x \mapsto 3 \; ; \; y := 1 \; ; \; \text{while} \; x \; s \\
\text{ASSIGN} \quad \text{SEQSTEP} & \quad \rightarrow \quad \cdot, x \mapsto 3, y \mapsto 1 \; ; \; \text{skip} \; ; \; \text{while} \; x \; s
\end{align*}
\]
Example program execution

\[
x := 3 ; (y := 1 ; \textbf{while } x (y := y \times x ; x := x + -1))
\]

Let’s write some of the state sequence.
You can justify each step with a full derivation.
Let \(s = (y := y \times x ; x := x + -1) \).

\[
\begin{align*}
\cdot ; x := 3 ; (y := 1 ; \textbf{while } x s) \\
\text{ASSIGN} &\quad \rightarrow \quad \cdot, x \mapsto 3 ; \textbf{skip} ; (y := 1 ; \textbf{while } x s) \\
\text{SEQSTEP} &\quad \rightarrow \quad \cdot, x \mapsto 3 ; y := 1 ; \textbf{while } x s \\
\text{SEQSTEP} &\quad \rightarrow \quad \cdot, x \mapsto 3, y \mapsto 1 ; \textbf{skip} ; \textbf{while } x s \\
\text{SEQSTEP} &\quad \rightarrow \quad \cdot, x \mapsto 3, y \mapsto 1 ; \textbf{while } x s
\end{align*}
\]
Example program execution

\[x := 3 ; (y := 1 ; \textbf{while} \ x \ (y := y \times x ; \ x := x + -1)) \]

Let’s write some of the state sequence. You can justify each step with a full derivation. Let \(s = (y := y \times x ; \ x := x + -1) \).

\[\cdot ; x := 3 ; (y := 1 ; \textbf{while} \ x \ s) \]

\[
\begin{align*}
\text{ASSIGN} & \quad \rightarrow \quad \cdot, x \mapsto 3 \ ; \ \text{skip} \ ; (y := 1 \ ; \ \textbf{while} \ x \ s) \\
\text{SEQSTEP} & \quad \rightarrow \quad \cdot, x \mapsto 3 \ ; y := 1 \ ; \ \textbf{while} \ x \ s \\
\text{SEQSKIP} & \quad \rightarrow \quad \cdot, x \mapsto 3, y \mapsto 1 \ ; \ \text{skip} \ ; \ \textbf{while} \ x \ s \\
\text{ASSIGN} & \quad \rightarrow \quad \cdot, x \mapsto 3, y \mapsto 1 \ ; \ \text{while} \ x \ s \\
\text{SEQSKIP} & \quad \rightarrow \quad \cdot, x \mapsto 3, y \mapsto 1 \ ; \ \textbf{if} \ \ x \ (s \ ; \ \textbf{while} \ x \ s) \ \text{skip}
\end{align*}
\]
Example program execution (cont’d)

\[
\text{WHILE} \quad \rightarrow \quad \cdot, x \mapsto 3, y \mapsto 1; \text{ if } x (s; \text{ while } x s) \text{ skip}
\]
Example program execution (cont’d)

\[\text{WHILE } \rightarrow \ \cdot, \ x \mapsto 3, \ y \mapsto 1 \ ; \ \text{if } x \ (s \ ; \ \text{while } x \ s) \ \text{skip} \]

\[\text{IFT } \rightarrow \ \cdot, \ x \mapsto 3, \ y \mapsto 1 \ ; \ (y := y \times x \ ; \ x := x + -1) \ ; \ \text{while } x \ s \]
Example program execution (cont’d)

\[
\text{WHILE } \rightarrow \cdot, x \mapsto 3, y \mapsto 1; \text{if } x \ (s; \text{while } x \ s) \ \text{skip} \\
\text{IFT } \rightarrow \cdot, x \mapsto 3, y \mapsto 1; (y := y \times x; x := x + -1); \text{while } x \ s \\
\text{ASSIGN} \ \ \ \text{SEQSTEP} \ \ \ \text{SEQSTEP} \rightarrow \cdot, x \mapsto 3, y \mapsto 1, y \mapsto 3; (\text{skip}; x := x + -1); \text{while } x \ s
\]
Example program execution (cont’d)

\[
\text{WHILE} \quad \rightarrow \quad \cdot, x \mapsto 3, y \mapsto 1 \ ; \ \text{if} \ x \ (s \ ; \ \text{while} \ x \ s) \ \text{skip} \\
\text{IFT} \quad \rightarrow \quad \cdot, x \mapsto 3, y \mapsto 1 \ ; (y := y \times x ; x := x + 1) \ ; \ \text{while} \ x \ s \\
\frac{\text{ASSIGN}}{\text{SEQSTEP}} \quad \rightarrow \quad \cdot, x \mapsto 3, y \mapsto 1, y \mapsto 3 ; (\text{skip} ; x := x + 1) \ ; \ \text{while} \ x \ s \\
\frac{\text{SEQSKIP}}{\text{SEQSTEP}} \quad \rightarrow \quad \cdot, x \mapsto 3, y \mapsto 1, y \mapsto 3 ; x := x + 1 \ ; \ \text{while} \ x \ s
\]
Example program execution (cont’d)

\[
\begin{align*}
\text{WHILE} & \quad \rightarrow \quad \cdot, x \mapsto 3, y \mapsto 1; \text{if } x \ (s \ ; \ \text{while } x \ s) \ \text{skip} \\
\text{IF} & \quad \rightarrow \quad \cdot, x \mapsto 3, y \mapsto 1; \ (y := y \ast x \ ; \ x := x + -1) \ ; \ \text{while } x \ s \\
\text{ASSIGN} & \quad \rightarrow \quad \cdot, x \mapsto 3, y \mapsto 1, y \mapsto 3; \ (\text{skip} \ ; \ x := x + -1) \ ; \ \text{while } x \ s \\
\text{SEQSTEP} & \quad \rightarrow \quad \cdot, x \mapsto 3, y \mapsto 1, y \mapsto 3; \ x := x + -1 \ ; \ \text{while } x \ s \\
\text{SEQSTEP} & \quad \rightarrow \quad \cdot, x \mapsto 3, y \mapsto 1, y \mapsto 3, x \mapsto 2; \ \text{skip} \ ; \ \text{while } x \ s
\end{align*}
\]
Example program execution (cont’d)

\[
\begin{align*}
\text{WHILE} & \rightarrow \cdot, x \mapsto 3, y \mapsto 1; \text{if } x \ (s \ ; \ \text{while } x \ s) \ \text{skip} \\
\text{IF} & \rightarrow \cdot, x \mapsto 3, y \mapsto 1; (y := y \times x; x := x + -1); \ \text{while } x \ s \\
\text{ASSIGN} & \rightarrow \cdot, x \mapsto 3, y \mapsto 1; \text{while } x \ s \\
\text{SEQ} & \rightarrow \cdot, x \mapsto 3, y \mapsto 1; \text{while } x \ s \\
\text{ASSIGN} & \rightarrow \cdot, x \mapsto 3, y \mapsto 1; \text{while } x \ s \\
\text{SEQ} & \rightarrow \cdot, x \mapsto 3, y \mapsto 1; \text{while } x \ s \\
\text{SEQ} & \rightarrow \cdot, x \mapsto 3, y \mapsto 1; \text{while } x \ s
\end{align*}
\]
Example program execution (cont’d)

<table>
<thead>
<tr>
<th>Instruction</th>
<th>State</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>while</td>
<td>$x \mapsto 3$, $y \mapsto 1$</td>
<td>if x (s ; while x s) skip</td>
</tr>
<tr>
<td>ifT</td>
<td>$x \mapsto 3$, $y \mapsto 1$</td>
<td>($y := y \times x$; $x := x + -1$) ; while x s</td>
</tr>
<tr>
<td>ASSIGN</td>
<td>$x \mapsto 3$, $y \mapsto 1$, $y \mapsto 3$</td>
<td>($skip$; $x := x + -1$) ; while x s</td>
</tr>
<tr>
<td>SEQSTEP</td>
<td>$x \mapsto 3$, $y \mapsto 1$, $y \mapsto 3$</td>
<td>$x := x + -1$; while x s</td>
</tr>
<tr>
<td>SEQSTEP</td>
<td>$x \mapsto 3$, $y \mapsto 1$, $y \mapsto 3$, $x \mapsto 2$</td>
<td>skip ; while x s</td>
</tr>
<tr>
<td>SEQSTEP</td>
<td>$x \mapsto 3$, $y \mapsto 1$, $y \mapsto 3$, $x \mapsto 2$</td>
<td>while x s</td>
</tr>
<tr>
<td>while</td>
<td>\ldots, $y \mapsto 3$, $x \mapsto 2$</td>
<td>if x (s ; while x s) skip</td>
</tr>
</tbody>
</table>

...
Example program execution (cont’d)

\[
\text{WHILE} \quad \rightarrow \quad \cdot, x \mapsto 3, y \mapsto 1 ; \text{if } x (s ; \text{while } x s) \text{ skip}
\]

\[
\text{IFT} \quad \rightarrow \quad \cdot, x \mapsto 3, y \mapsto 1 ; (y := y * x ; x := x + -1) ; \text{while } x s
\]

\[
\text{ASSIGN} \quad \rightarrow \quad \cdot, x \mapsto 3, y \mapsto 1, y \mapsto 3 ; (\text{skip ; } x := x + -1) ; \text{while } x s
\]

\[
\text{SEQSTEP} \quad \rightarrow \quad \cdot, x \mapsto 3, y \mapsto 1, y \mapsto 3 ; x := x + -1 ; \text{while } x s
\]

\[
\text{SEQSTEP} \quad \rightarrow \quad \cdot, x \mapsto 3, y \mapsto 1, y \mapsto 3 ; x := x + -1 ; \text{while } x s
\]

\[
\text{ASSIGN} \quad \rightarrow \quad \cdot, x \mapsto 3, y \mapsto 1, y \mapsto 3, x \mapsto 2 ; \text{skip ; while } x s
\]

\[
\text{SEQSTEP} \quad \rightarrow \quad \cdot, x \mapsto 3, y \mapsto 1, y \mapsto 3, x \mapsto 2 ; \text{while } x s
\]

\[
\text{SEQSTEP} \quad \rightarrow \quad \cdot, x \mapsto 3, y \mapsto 1, y \mapsto 3, x \mapsto 2 ; \text{while } x s
\]

\[
\text{WHILE} \quad \rightarrow \quad \ldots, y \mapsto 3, x \mapsto 2 ; \text{if } x (s ; \text{while } x s) \text{ skip}
\]

\[
\ldots
\]

\[
\rightarrow \quad \ldots, y \mapsto 6, x \mapsto 0 ; \text{skip}
\]
Where we are

We have defined $H;e \Downarrow c$ and $H;s \rightarrow H';s'$
and extended the latter to give a whole program s a meaning.

We have used “operational semantics”:

- Definition by interpretation:
 - program means what an interpreter (written in a metalanguage) says it means
 - interpreter for an abstract machine (sometimes, very abstract)
- The way we did expressions is “large-step” (or, “natural”)
- The way we did statements is “small-step” (or, “structured”)
Where we are

We have defined $H;e \downarrow c$ and $H;s \rightarrow H';s'$ and extended the latter to give a whole program s a meaning.

We have used “operational semantics”:

- Definition by interpretation:
 - program means what an interpreter (written in a metalanguage) says it means
 - interpreter for an abstract machine (sometimes, very abstract)
- The way we did expressions is “large-step” (or, “natural”)
- The way we did statements is “small-step” (or, “structured”)

Large-step does not distinguish errors and divergence.
- But we defined IMP to have no errors
- And expressions never diverge

Large-step simpler than small-step when appropriate.
Judgements and Inference Rules

There is a lot of convention built into judgements and inference rules:

- conclusion must be a judgement
- hypotheses must be judgements or logical formulae
- judgements in conclusion or hypotheses may be constrained to elements of a specific syntactic form
- metavariables that appear in conclusion are \forall quantified
- metavariables that do not appear in conclusion are \exists quantified
- repeated metavariables are the “same”
 - contrast with BNF, where repeated metavariables are “different”
Judgements and Inference Rules

This,

\[
\begin{array}{c}
H;e_1 \Downarrow c_1 & H;e_2 \Downarrow c_2 \\
\hline
H;e_1 + e_2 \Downarrow c_1 + c_2
\end{array}
\]

is equivalent to

\[
\begin{array}{c}
e = e_1 + e_2 & H;e_1 \Downarrow c_1 & H;e_2 \Downarrow c_2 & c = c_1 + c_2 \\
\hline
H;e \Downarrow c
\end{array}
\]

which is read:

For all heaps \(H \), expressions \(e \), and constants \(c \),
if there exist expressions \(e_1 \) and \(e_2 \) and constants \(c_1 \) and \(c_2 \)
and \(e = e_1 + e_2 \), \(H;e_1 \Downarrow c_1 \), \(H;e_2 \Downarrow c_2 \), and \(c = c_1 + c_2 \) are all true (provable),
then \(H;e \Downarrow c \) is true (provable).
There is a lot of convention built into judgements and inference rules:

- conclusion must be a judgement
- hypotheses must be judgements or logical formulae
- judgements in conclusion or hypotheses may be constrained to elements of a specific syntactic form
- metavariables that appear in conclusion are \forall quantified
- metavariables that do not appear in conclusion are \exists quantified
- repeated metavariables are the “same”
 - contrast with BNF, where repeated metavariables are “different”
Judgements and Inference Rules

Judgements and inference rules are versatile PL notation.

Could have defined syntax using a judgement and inference rules:

$e \in \text{exp}$

\[
\begin{align*}
\text{c } \in \text{exp} & \quad \text{x } \in \text{exp} \\
\text{e}_1 \in \text{exp} \quad \text{e}_2 \in \text{exp} & \quad \text{e}_1 \in \text{exp} \quad \text{e}_2 \in \text{exp} \\
\text{e}_1 + \text{e}_2 \in \text{exp} & \quad \text{e}_1 * \text{e}_2 \in \text{exp}
\end{align*}
\]
Judgements and Inference Rules

Judgements and inference rules are versatile PL notation.

Could have defined heap lookup using a judgement and inference rules:

\[H \mathrel{@} x \leadsto c \]

EMPTY

\[
\begin{array}{c}
\cdot \mathrel{@} x \leadsto 0
\end{array}
\]

HIT

\[
\begin{array}{c}
H', x \mapsto c \mathrel{@} x \leadsto c
\end{array}
\]

MISS

\[
\begin{array}{c}
x \neq y' \quad H' \mathrel{@} x \leadsto c \\
\hline
H', y' \mapsto c' \mathrel{@} x \leadsto c
\end{array}
\]
Judgements and Inference Rules

Judgements and inference rules are versatile PL notation.

Could have defined multi-step statement semantics using judgements and inference rules:

\[H_1; s_1 \rightarrow^n H_2; s_2 \]

\[\frac{H_1; s \rightarrow^0 H; s}{H; s} \]

\[H_1; s_1 \rightarrow^* H_2; s_2 \]

\[\frac{H_1; s \rightarrow^n H_2; s_2}{H_1; s_1 \rightarrow^{n+1} H_3; s_3} \]

Note: With these inference rules, complete derivations of \(H_1; s_1 \rightarrow^* H_2; s_2 \) are unique.
Judgements and Inference Rules

Judgements and inference rules are versatile PL notation.

Could have defined multi-step statement semantics using judgements and inference rules:

\[
H_1; s_1 \rightarrow^* H_2; s_2
\]

\[
\frac{H; s \rightarrow^* H; s}{H_1; s_1 \rightarrow^* H_2; s_2}
\]

\[
\frac{H_1; s_1 \rightarrow^* H_2; s_2}{H_1; s_1 \rightarrow^* H_3; s_3}
\]

\[
\frac{H_2; s_2 \rightarrow^* H_3; s_3}{H_1; s_1 \rightarrow^* H_3; s_3}
\]

\[
\frac{H_1; s_1 \rightarrow H_2; s_2}{H_1; s_1 \rightarrow^* H_2; s_2}
\]

Note: With these inference rules, complete derivations of \(H_1; s_1 \rightarrow^* H_2; s_2 \) are not unique.
Judgements and Inference Rules

Judgements and inference rules are versatile PL notation.

Could have defined program semantics using a judgement and inference rule:

\[s \rightarrow^* c \]

\[\cdot ; s \rightarrow^* \cdot H ; \text{skip} \quad H \circ \text{ans} \leadsto c \]

\[\frac{\cdot ; s \rightarrow^* \cdot H ; \text{skip} \quad H \circ \text{ans} \leadsto c}{s \rightarrow^* c} \]
Review: **IMP** abstract syntax (programs and heaps)

\[
\begin{align*}
 s & ::= x := e \mid \text{skip} \mid s ; s \mid \text{if } e s s \mid \text{while } e s \\
 e & ::= c \mid x \mid e + e \mid e * e \\
 (c & \in \{\ldots, -2, -1, 0, 1, 2, \ldots}\}) \\
 (x & \in \{x_1, x_2, \ldots, y_1, y_2, \ldots, z_1, z_2, \ldots, \ldots\})
\end{align*}
\]

\[
H ::= \cdot \mid H, x \mapsto c
\]
Review: **IMP** judgement for heap lookup

\[H \circ x \rightsquigarrow c \]

EMPTY

\[
\cdot \@ x \rightsquigarrow 0
\]

HIT

\[
H', x \mapsto c \@ x \rightsquigarrow c
\]

MISS

\[
x \neq y' \\
H' \circ x \rightsquigarrow c
\]

\[
H', y' \mapsto c' \@ x \rightsquigarrow c
\]
Review: **IMP** operational semantics for expressions (big-step)

\[
H;e \downarrow c
\]

CONST

\[
\begin{align*}
\frac{}{H;c \downarrow c}
\end{align*}
\]

VAR

\[
\begin{align*}
H \ @ x & \leadsto c \\
\frac{H;e \downarrow c}{H;e \downarrow c}
\end{align*}
\]

ADD

\[
\begin{align*}
H;e_1 \downarrow c_1 \quad H;e_2 \downarrow c_2 \\
\frac{}{H;e_1 + e_2 \downarrow c_1 + c_2}
\end{align*}
\]

MULT

\[
\begin{align*}
H;e_1 \downarrow c_1 \quad H;e_2 \downarrow c_2 \\
H;e_1 \ast e_2 \downarrow c_1 \ast c_2
\end{align*}
\]
Review: **IMP** operational semantics for statements (small-step)

\[H_1; s_1 \rightarrow H_2; s_2 \]

ASSIGN

\[
\frac{H; e \downarrow c}{H; x := e \rightarrow H, x \mapsto c; \text{skip}}
\]

WHILE

\[
\frac{H; \text{while } e \ s \rightarrow}{H; \text{if } e (s ; \text{while } e \ s) \text{ skip}}
\]

SEQ_SKIP

\[
\frac{H; \text{skip } ; s \rightarrow H; s}{H; s \rightarrow H; s}
\]

SEQ_STEP

\[
\frac{H; s_1 \rightarrow H'; s_1'}{H; s_1 ; s_2 \rightarrow H'; s_1' ; s_2}
\]

IFT

\[
\frac{H; e \downarrow c \quad c > 0}{H; \text{if } e s_1 s_2 \rightarrow H; s_1}
\]

IFF

\[
\frac{H; e \downarrow c \quad c \leq 0}{H; \text{if } e s_1 s_2 \rightarrow H; s_2}
\]
We can prove properties about all expressions (i.e., about \textbf{IMP}):

- **Progress:**

 For all H and e, there exists c such that $H;e \Downarrow c$.

- **Determinacy:**

 For all H, e, c_1, and c_2, if $H;e \Downarrow c_1$ and $H;e \Downarrow c_2$, then $c_1 = c_2$.

We rigged it that way...

- **What would division, undefined variables, or \texttt{rand()} do?**

Proofs are by induction on the the structure of the expression e.

- **Proofs require lemmas for “progress” and “determinacy” of heaps.**

- **Details in a few lectures and Homework 3.**
Preview: Establishing properties about a program

We can prove a property about a terminating program by “running” it.

Example: Our last program terminates with x holding 0.
We can prove a property about a terminating program by “running” it.

Example: Our last program terminates with x holding 0.

We can prove that a program s diverges:

- for all H and n, $s \rightarrow^n H;\text{skip}$ cannot be derived.

Example: `while 1 skip`
We can prove a property about a terminating program by “running” it.

Example: Our last program terminates with x holding 0.

We can prove that a program s diverges:

- for all H and n, $\cdot; s \rightarrow^n H;\text{skip}$ cannot be derived.

Example: while 1 skip

Proof is by induction on n with a stronger induction hypothesis:
If we can derive $\cdot;\text{while 1 skip} \rightarrow^n \cdot; s'$
then s' is while 1 skip
or s' is if 1 (skip ; while 1 skip) skip
or s' is skip ; while 1 skip.

Details in a few lectures.
Establishing properties about all programs

We can prove properties about all programs (i.e., about \textbf{IMP}):

- **Progress:**

 For all H and s, there exists H' and s' such that $H; s \rightarrow H'; s'$.

- **Determinacy:**

 For all H, s, H'_1, s'_1, H'_2, and s'_2, if $H; s \rightarrow H'_1; s'_1$ and $H; s \rightarrow H'_2; s'_2$, then $H'_1 = H'_2$ and $s'_1 = s'_2$.
Establishing properties about all programs

We can prove properties about all programs (i.e., about IMP):

▶ Progress:

For all H and s, there exists H' and s' such that $H;s \rightarrow H';s'$.

▶ Determinacy:

For all H, s, H_1', s_1', H_2', and s_2', if $H;s \rightarrow H_1';s_1'$ and $H;s \rightarrow H_2';s_2'$, then $H_1' = H_2'$ and $s_1' = s_2'$.

One of these properties is not true...
Establishing properties about all programs

We can prove properties about all programs (i.e., about \textbf{IMP}):

- **Progress:**

 For all H and s, there exists H' and s' such that $H; s \rightarrow H'; s'$.

- **Determinacy:**

 For all H, s, H'_1, s'_1, H'_2, and s'_2,

 if $H; s \rightarrow H'_1; s'_1$ and $H; s \rightarrow H'_2; s'_2$, then $H'_1 = H'_2$ and $s'_1 = s'_2$.

One of these properties is not true...
Establishing properties about all programs

We can prove properties about all programs (satisfying a property).
Establishing properties about all programs

We can prove properties about all programs (satisfying a property).

Example: If H and s have no negative constants and $H; s \rightarrow H'; s'$, then H' and s' have no negative constants.
Establishing properties about all programs

We can prove properties about all programs (satisfying a property).

Example: If H and s have no negative constants and $H; s \rightarrow H'; s'$, then H' and s' have no negative constants.

Proof is by structural induction on the derivation $H; s \rightarrow H'; s'$. Details next time.
Establishing properties about all programs

We can prove properties about all programs (satisfying a property).

Example: If H and s have no negative constants and $H; s \rightarrow H'; s'$, then H' and s' have no negative constants.

Proof is by structural induction on the derivation $H; s \rightarrow H'; s'$. Details next time.

Example: If for all H, we know s_1 and s_2 terminate, then for all H, we know $s_1; s_2$ terminates.
Establishing properties about all programs

We can prove properties about all programs (satisfying a property).

Example: If H and s have no negative constants and $H; s \rightarrow H'; s'$, then H' and s' have no negative constants.

Proof is by structural induction on the derivation $H; s \rightarrow H'; s'$. Details next time.

Example: If for all H, we know s_1 and s_2 terminate, then for all H, we know $s_1 ; s_2$ terminates.

Proof is almost direct (but needs a lemma).

$$H; s_1 ; s_2 \rightarrow^* H'; \text{skip} ; s_2 \rightarrow H'; s_2 \rightarrow^* H''; \text{skip}$$