Before starting, be sure that you understand the course policy on Academic Integrity.

1. **PM: A Pattern Matching Language**

Recall the pattern matching language from Homework 03.

Syntax definition:

\[v ::= c \mid (v,v) \mid s(v) \]
\[p ::= _ \mid x \mid c \mid (p,p) \mid s(p) \mid \ldots(p) \]
\[b ::= _ \mid b, x \mapsto v \]

\(c \in \{\ldots,-2,-1,0,1,2,\ldots\} \)
\(s \) any non-empty string of letters
\(x \) any non-empty string of letters

Formal large-step operational semantics

\[p;v \Downarrow b \]

\[\begin{aligned}
L\text{Wild} & : \quad _;v \Downarrow _ \\
L\text{Var} & : \quad x;v \Downarrow x \mapsto v \\
L\text{Const} & : \quad c;c \Downarrow _ \\
L\text{Pair} & : \quad p_1;v_1 \Downarrow b_1 \quad p_2;v_2 \Downarrow b_2 \\
& \quad (p_1,p_2);(v_1,v_2) \Downarrow b_1 \circ b_2 \\
L\text{Tag} & : \quad p_s;v_s \Downarrow b \\
& \quad s(p_s);s(v_s) \Downarrow b \\
L\text{DescPair1} & : \quad \ldots(p_d);v_1 \Downarrow b \\
& \quad \ldots(p_d);(v_1,v_2) \Downarrow b \\
L\text{DescPair2} & : \quad \ldots(p_d);v_2 \Downarrow b \\
& \quad \ldots(p_d);(v_1,v_2) \Downarrow b \\
L\text{DescTag} & : \quad \ldots(p_d);v_s \Downarrow b \\
& \quad \ldots(p_d);s(v_s) \Downarrow b \\
L\text{DescVal} & : \quad \ldots(p_d);v \Downarrow b
\end{aligned} \]
Formal small-step operational semantics

\[
p;v;b \rightarrow p';v';b'
\]

<table>
<thead>
<tr>
<th>Rule</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>SVar</td>
<td>[x;v;b \rightarrow _;v;b, x \mapsto v]</td>
</tr>
<tr>
<td>SCnst</td>
<td>[c;c;b \rightarrow _;c;b]</td>
</tr>
<tr>
<td>SPair1</td>
<td>[p_1;v_1;b \rightarrow p'_1;v'_1;b']</td>
</tr>
<tr>
<td>SPair2</td>
<td>[(p_1,p_2);(v_1,v_2);b \rightarrow (p'_1,p_2);(v'_1,v_2);b']</td>
</tr>
<tr>
<td>STag</td>
<td>[s(p_s);s(v_s);b \rightarrow p_s;v_s;b]</td>
</tr>
<tr>
<td>SDescPair1</td>
<td>[\ldots(p_d);(v_1,v_2);b \rightarrow \ldots(p_d);v_1;b]</td>
</tr>
<tr>
<td>SDescPair2</td>
<td>[\ldots(p_d);(v_1,v_2);b \rightarrow \ldots(p_d);v_2;b]</td>
</tr>
<tr>
<td>SDescVal</td>
<td>[\ldots(p_d);v;b \rightarrow p_d;v;b]</td>
</tr>
<tr>
<td>SDescTag</td>
<td>[\ldots(p_d);s(v_s);b \rightarrow \ldots(p_d);v_s;b]</td>
</tr>
</tbody>
</table>

Formal small-steps operational semantics

\[
p;v;b \rightarrow^* p;v;b
\]

<table>
<thead>
<tr>
<th>Rule</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>SZero</td>
<td>[p;v;b \rightarrow^* p;v;b]</td>
</tr>
<tr>
<td>SStep</td>
<td>[p;v;b \rightarrow p^\dagger;v^\dagger;b^\dagger \rightarrow^* p';v';b']</td>
</tr>
<tr>
<td>*S^Step</td>
<td>[p;v;b \rightarrow^* p';v';b']</td>
</tr>
</tbody>
</table>
Choose either (a) or (b) to complete and submit.

(a) Prove the following:

i. Lemma (small-step match prefix large-step match)
If \(p;v;b_a \rightarrow^* p';v';b'_a \) and \(p';v' \downarrow b'_b \), then there exists \(b_b \) such that \(p;v \downarrow b_b \).

Hints:
- The proof structure is similar to a proof we sketched in Lecture 06.
- Use induction on the first assumed derivation.
- The proof will have cases for each rule in the small-step semantics and you must show that a derivation exists in the large-step semantics.
- Note that the lemma does not state that there is any relationship between \(b_b \) and \(b_a \) or \(b'_b \). Doing so appears to be much more difficult.
- The proof of this lemma is longer than the proof of the following theorem.

ii. Theorem (small-steps match implies large-step match)
If \(p;v;b_a \rightarrow^* _;v';b'_a \), then there exists \(b_b \) such that \(p;v \downarrow b_b \).

Hints:
- The proof structure is similar to a proof we sketched in Lecture 06.
- Use induction on the assumed derivation.
- The proof will have cases for each rule in the small-steps semantics and you must show that a derivation exists in the large-step semantics.
- Use Lemma (small-step match prefix large-step match).
- Note that the theorem does not state that there is any relationship between \(b_b \) and \(b_a \) or \(b'_a \). Doing so appears to be much more difficult.
- The proof of this theorem is shorter than the proof of the preceding lemma.

(b) Prove the following:

i. Lemma (small-steps lift through pair)
If \(p_a;v_a;b \rightarrow^* p'_a;v'_a;b' \), then \((p_a,p_b);(v_a,v_b);b \rightarrow^* (p'_a,p_b);(v'_a,v_b);b' \).

Hints:
- Use induction on the assumed derivation.
- The proof will have cases for each rule in the small-steps semantics and you must show that a derivation exists in the small-steps semantics.
- The proof of this lemma is shorter than the proof of the following theorem.

ii. Theorem (large-step match implies small-steps match)
If \(p;v \downarrow b \), then for all \(b \), there exists \(v' \) such that \(p;v;b \rightarrow^* _;v';b \ @ b \).

Hints:
- The proof structure is similar to a proof we sketched in Lecture 06.
- Use induction on the assumed derivation.
- The proof will have cases for each rule in the large-step semantics and you must show that a derivation exists in the small-steps semantics.
- Use Lemma (small-steps lift through pair).
- Use, without proof, Lemma (small-steps transitive): If \(p_a;v_a;b_a \rightarrow^* p_b;v_b;b_b \) and \(p_b;v_b;b_b \rightarrow^* p_c;v_c;b_c \), then \(p_a;v_a;b_a \rightarrow^* p_c;v_c;b_c \).
- Note that the theorem uses \(b \) twice; it states that the small-step semantics produces the same binding list (appended to \(b \)). You may assume, without proof, that \(b @ _ = b \), that \(b @ x \Rightarrow v = b \), \(x \Rightarrow v \), and that \(b @ _ b @ _ b_2 = b @ _ (b_1 @ b_2) \).
- Note that the theorem is stronger than what we actually want (which is that \(p;v; \rightarrow^* _;v';b \)). You will need the stronger claim in one case of the proof.
- The proof of this theorem is longer than the proof of the preceding lemma.
2. \(\lambda\)-calculus

Recall the encodings of booleans and natural numbers in the Lambda Calculus:

\[
\begin{align*}
\text{true} &= \lambda x. \lambda y. x \\
\text{false} &= \lambda x. \lambda y. y \\
\text{if} &= \lambda b. \lambda t. \lambda f. b \ t \ f
\end{align*}
\]

\[
\begin{align*}
0 &= \lambda s. \lambda z. z \\
1 &= \lambda s. \lambda z. s \ z \\
2 &= \lambda s. \lambda z. s \ (s \ z) \\
3 &= \lambda s. \lambda z. s \ ((s \ z)) \\
\text{succ} &= \lambda n. \lambda s. \lambda z. s \ (n \ s \ z) \\
\text{plus} &= \lambda m. \lambda n. \text{succ} \ m \\
\text{times} &= \lambda m. \lambda n. \text{plus} \ n \ 0 \\
\text{isZero} &= \lambda n. \ n \ (\lambda x. \text{false}) \ \text{true}
\end{align*}
\]

Note that all of these abbreviations are values.

(a) Show how to write a term \text{and} that performs the logical conjunction of two booleans.

(b) Show the small-step, left-to-right, call-by-value (CBV) reduction of the term \text{and true false}. Expand abbreviations as necessary so that every reduction step shows the explicit \(\lambda x. e\) term that is being reduced.

(c) Show how to write a term \text{or} that performs the logical disjunction of two booleans.

(d) Show the small-step, left-to-right, call-by-value (CBV) reduction of the term \text{or true false}.

(e) Show how to write a term \text{not} that performs the logical negation of a boolean.

(f) Show how to write a term \text{isEven} that determines whether or not a number is even. It should return \text{true} when the number is even and \text{false} otherwise.

(g) Show the small-step, left-to-right, call-by-value (CBV) reduction of the term \text{isEven (succ 1)}.
Debriefing

- How many hours did you spend on this assignment?
- Would you rate it as easy, moderate, or difficult?
- How deeply do you feel you understand the material it covers (0% – 100%)?
- If you have any other comments about the assignment, then please include them with your submission or send email to mtf@cs.rit.edu.

Submission

All components of the assignment:

- problems (1a or 1b), 2a, 2b, 2c, 2d, 2e, 2f, 2g, and debriefing in a file named homework04.pdf

must be submitted to the Homework 4 Assignment on MyCourses by the due date.

For handwritten components, please use either a document scanner or a mobile scanning app like Adobe Scan or Microsoft Lens.