Secure RDD for SparkFHE

Sai Sujith Kammari
Dr. Peizhao Hu (Advisor)
TABLE OF CONTENTS

01 Project Refresh
 What is Secure RDD

02 Accomplished Work
 HE BLAS & Secure K-means

03 Evaluation
 How was the work evaluated

04 Conclusion & Future Work
 Extension to the project
01
Project Refresh

What is Secure RDD for SparkFHE
Secure RDD for SparkFHE

- Apache Spark is the most popular open-source, distributed processing system used for big data workloads.

- Workloads in Apache Spark
 a. Core
 b. MLib
 c. Streaming
 d. SQL
 e. GraphX

- Apache Spark provides high-level APIs in Java, Scala, Python and R, and supports code reuse across multiple workloads.

- Implementing homomorphic encryption in the RDDs which are used in MLib.
Accomplished Work

Homomorphic Encrypted BLAS & Secure K-means
Secure BLAS

- Basic Linear Algebra Subprograms
 - axpy: $y = y + (a \cdot x)$
 - scal: $x = a \cdot x$
 - dspr: $A = \alpha \cdot x \cdot x^T + A$
 - dspmv: $y = \alpha \cdot A \cdot x + \beta \cdot y$
 - dswap: $x \leftrightarrow y$
 - dtpmv: $x = A \cdot x$ (or) $x = A^T \cdot x$
Secure Machine Learning

- K-Means clustering
 - Iterative unsupervised learning algorithm
 - Aims to partition data into k clusters based on the similarity of the data points
 - Formally: \(\arg\min \sum_{i=1}^{k} \sum_{x \in S_i} ||x - \mu_i||^2 \) where \(\mu_i \) is the mean of points in \(S_i \)
- Challenges with Homomorphic Encrypted data
 - Encrypted data cannot be checked for equality
 - Encrypted values cannot be compared

Secure K-Means clustering

- Data owner participation is required
- Additional information, Updatable Distance Matrix (UDM) matrix, will be sent to cloud along with the encrypted data
- Cloud takes help of UDM to calculate the similarity
- Data owner decides when the clustering has to be stopped

Data, $D = \{
\{1,2\}, \\
\{4,9\}, \\
\{3,8\}\n\}$
r_y where $x = 1$; $r_1 = \{1,2\}$
$m = 2$ attributes
$a_1 = 1; a_2 = 2$

UDM, $U = \{
\{0.0, 0.0\}, \\
\{3.0, 7.0\}, \\
\{2.0, 6.0\}
\},
\{
\{3.0, 7.0\}, \\
\{0.0, 0.0\}, \\
\{1.0, 1.0\}
\},
\{
\{2.0, 6.0\}, \\
\{1.0, 1.0\}, \\
\{0.0, 0.0\}
\}\}

Explanation with $U[0]$
$x = 0$ $y = 1$
$\{0.0, 0.0\} = \{\text{abs}(1-1), \text{abs}(2-2)\}$
$\{3.0, 7.0\} = \{\text{abs}(1-4), \text{abs}(2-9)\}$
$\{2.0, 6.0\} = \{\text{abs}(1-3), \text{abs}(2-8)\}$
Secure Machine Learning

- **Secure K-Means clustering**
 - Data Owner generates UDM and encrypts data
 - Sends the UDM and encrypted data to cloud
 - Cloud populates the clusters by calculating the similarities using the UDM information
 - Cloud returns the new centroids to the data owner
 - Data owner compares the new centroids and decides to continue clustering or stop
03 Evaluation

How was my work evaluated
Evaluation

- BLAS methods

 - Operated on encrypted data and cross verified actual results with the expected

    ```
    Running axpy Example
    y ← a*x where a = 3, y = [2,2,2] and x = [1,0,1] Expected: [5 2 5]
    Actual: [5.00 2.00 5.00 ]
    Running scal Example
    x = a*x where a = 3, x = [1,1,1] Expected: [3 3 3]
    Actual: [5.00 3.00 3.00 ]
    Running depp example
    ====== Before Calculation ======
            3.00  1.00  2.00
    ====== After Calculation ======
            3.00  259.00  114.00
    ```

- K-Means clustering

 - Trained on iris data set and verified if all the flowers are in correct clusters

 - On hold as it requires data owner involvement in the process
Conclusion & Next steps

Extension to the project
Conclusion & Next steps

BLAS and Kmeans clustering
Other BLAS methods can be implemented. Build a new algorithm to group the data points into K clusters with less data owner involvement.

Sparse vector
Until now, no implementation is started for sparse vector operations.

Secure Machine Learning
Implement other Machine Learning algorithms on the encrypted data using the BLAS methods.
Any Questions
THANKS

CREDITS: This presentation template was created by Slidesgo, including icons by Flaticon, and infographics & images by Freepik. Please keep this slide for attribution.