Federated Learning with Secure Multiparty Computation

Student - Palash Jain
Faculty Advisor - Prof. Minseok Kwon
Reminder

- Protect sensitive information of individual/organization while building models using federated learning.
- Make federated learning more scalable.
- Use differential differential privacy to secure models from revealing sensitive information.
- Combine machine learning models in a distributed environment using Secure Multiparty Computation.
Goals Planned

- **Read papers/books**
 - How to Share a Secret - Adi Shamir
 - A Pragmatic Introduction to Secure Multi-Party Computation
 - Programming Differential Privacy

- **Topics**
 - Shamir Secret Sharing
 - Additive Secret Sharing
 - Differential Privacy
 - Federated Learning
 - Multiparty Secure Computation

- **Tools**
 - Setup MPyC
Goals achieved

- **Read papers/books**
 - How to Share a Secret - Adi Shamir
 - A Pragmatic Introduction to Secure Multi-Party Computation
 - Programming Differential Privacy

- **Topics**
 - Shamir Secret Sharing
 - Additive Secret Sharing
 - Differential Privacy
 - Federated Learning
 - Multiparty Secure Computation

- **Tools**
 - Setup MPyC
Additional Topics Covered

- Read papers
 - Combining Differential Privacy and Secure Multiparty Computation
 - Secure Multi-party Differential Privacy

- Topics
 - Laplace Mechanism
 - Gaussian Mechanism
Plan for Milestone 2

- Task 1 - Understand and play around the code for Lightweight MPC Framework for Python.
- Task 2 - Start with the implementation of layer of Differential Privacy.
Thank You!