Programming Language Theory

Subtyping
Being less restrictive

Recall: “Will a \(\lambda\) term get stuck?” is undecidable.

- A sound, decidable type system can *always* be made less restrictive.

An “uninteresting” rule that is sound but not “admissable” (implied by existing rules):

\[
\Gamma \vdash e_1 : \tau \\
\Gamma \vdash \text{if true then } e_1 \text{ else } e_2 : \tau
\]

Study “interesting” ways to give one term many types (“polymorphism”).

Fact: The STLC with explicit arg types \((\lambda x : \tau \cdot e)\) has no polymorphism:

- If \(\Gamma \vdash e : \tau_1\) and \(\Gamma \vdash e : \tau_2\), then \(\tau_1 = \tau_2\).

Fact: Even without explicit types, many “reuse patterns” are ill-typed:

- Ex: \((\lambda f. (f \ 0, f \ \text{true}))(\lambda x. (x, x))\) (evaluates to \(((0,0), (\text{true}, \text{true}))\)).
“Polymorphism”: An Overloaded PL Word

“Polymorphism” means many forms (literally and figuratively) . . .

▶ **Ad hoc polymorphism:**
 ▶ $e_1 + e_2$ in SML, C, Java, C++, etc.

▶ **Ad hoc polymorphism, cont’d:**
 ▶ Choose the $+$ operation based on the *run-time* types of e_1 and e_2
 (which may be different)

▶ **Parametric polymorphism:**
 ▶ ```
 let fun dup x => (x, x) in (dup 0, dup true) end
  ```
    is legal SML because `dup` has type `'a -> 'a * 'a`

▶ **Subtype polymorphism:**
  ▶ ```
    new Vector().add(new C())
  ```
 is legal Java because `new C()` has types `Object` and `C`

...and nothing.

(Better terms: “static overloading”, “dynamic dispatch”, “type abstraction”, and “subtyping”.)
Plan

Begin studying subtyping:

- A mechanism to let more expressions be well-typed, without (necessarily) adding any new operational behavior.
- Will consider coercions towards end of lecture.

Continue to use STLC (w/ Extensions) as core model.

Much later(?):

- Dynamic-dispatch, inheritance vs. subtyping, etc.
- (Concepts in OO programming.)

Motto: Subtyping is not a matter of opinion!
Records

We’ll use records to motivate subtyping:

\[
e ::= \cdots | \{ l_1 = e_1; \cdots ; l_n = e_n \} | e.l
\]

\[
\nu ::= \cdots | \{ l_1 = \nu_1; \cdots ; l_n = \nu_n \}
\]

\[
\tau ::= \cdots | \{ l_1 : \tau_1; \cdots ; l_n : \tau_n \}
\]

\[
e_i \to_{\text{cbv}} e_i'
\]

\[
\{ l_1 = \nu_1; \cdots ; l_{i-1} = \nu_{i-1}; l_i = e_i; \cdots ; l_n = e_n \}
\]

\[
\to_{\text{cbv}} \{ l_1 = \nu_1; \cdots ; l_{i-1} = \nu_{i-1}; l_i = e_i'; \cdots ; l_n = e_n \}
\]

\[
e \to_{\text{cbv}} e'
\]

\[
e.l \to_{\text{cbv}} e'.l
\]

\[
\{ l_1 = \nu_1; \cdots ; l_n = \nu_n \}.l_i \to_{\text{cbv}} \nu_i
\]

\[
\Gamma \vdash e_1 : \tau_1 \quad \cdots \quad \Gamma \vdash e_n : \tau_n
\]

\[
\Gamma \vdash \{ l_1 = e_1; \cdots ; l_n = e_n \} : \{ l_1 : \tau_1; \cdots ; l_n : \tau_n \}
\]

\[
\Gamma \vdash e : \{ l_1 : \tau_1; \cdots ; l_n : \tau_n \}
\]

\[
\Gamma \vdash e.l_i : \tau_i
\]

Fields in a record or record type should be distinct.
Fields do not α-convert.
An example

Does this program type check? Does this program get stuck?

\[
(\lambda x : \{ l_1 : \text{int}; l_2 : \text{int} \}. x. l_1 + x. l_2) \{ l_1 = 3; l_2 = 4; l_3 = 5 \}
\]
An example

Does this program type check? No. Does this program get stuck? No.

\[(\lambda x : \{ l_1 : \text{int}; l_2 : \text{int} \}. x.l_1 + x.l_2) \{ l_1 = 3; l_2 = 4; l_3 = 5 \}\]
An example

Does this program type check? No. Does this program get stuck? No.

\((\lambda x : \{l_1 : \text{int}; l_2 : \text{int}\}. x.l_1 + x.l_2) \{l_1 = 3; l_2 = 4; l_3 = 5\}\)

Suggests width subtyping:

\[\tau' \leq \tau \]

\[\{l_1 : \tau_1; \ldots; l_n : \tau_n; l: \tau\} \leq \{l_1 : \tau_1; \ldots; l_n : \tau_n\} \]

And one new type-checking rule:

Subsumption

\[\begin{array}{c}
\Gamma \vdash e : \tau' \\
\tau' \leq \tau
\end{array} \]

\[\Gamma \vdash e : \tau \]
Now Program is Well-Typed

\[
\begin{align*}
\mathcal{D}_1 & \quad \mathcal{D}_2 \\
\therefore (\lambda x : \{l_1:\text{int}; l_2:\text{int}\}. \ x.l_1 + x.l_2) \{l_1=3; l_2=4; l_3=5\} & : \text{int} \\
\therefore, x : \{l_1:\text{int}; l_2:\text{int}\} & \vdash x.l_1 + x.l_2 : \text{int} \\
\mathcal{D}_1 = \therefore \lambda x : \{l_1:\text{int}; l_2:\text{int}\}. \ x.l_1 + x.l_2 : \{l_1:\text{int}; l_2:\text{int}\} & \rightarrow \text{int} \\
\therefore \{l_1=3; l_2=4; l_3=5\} & \vdash \{l_1=3; l_2=4; l_3=5\} : \{l_1:\text{int}; l_2:\text{int}\} \\
\mathcal{D}_2 = \therefore \{l_1=3; l_2=4; l_3=5\} : \{l_1:\text{int}; l_2:\text{int}\} \\
\end{align*}
\]

The derivation of the *subtyping fact* uses rules for the $\tau' \leq \tau$ judgement.

\blacksquare \{l_1:\text{int}; l_2:\text{int}; l_3:\text{int}\} \leq \{l_1:\text{int}; l_2:\text{int}\}$ only requires the *width subtyping* axiom

Clean division of responsibility:

\blacksquare Where to use subsumption.

\blacksquare How to show two types are subtypes.
Another example

Does this program type check? Does this program get stuck?

\[(\lambda x : \{l_1 : \text{int}; l_2 : \text{int}\}. \ x.l_1 + x.l_2) \{l_2 = 3; l_1 = 4\}\]
Another example

Does this program type check? No. Does this program get stuck? No.

\[(\lambda x : \{l_1\text{int}; l_2\text{int}\}. x.l_1 + x.l_2) \{l_2=3; l_1=4\}\]
Another example

Does this program type check? No. Does this program get stuck? No.

\[(\lambda x : \{l_1: \text{int}; l_2: \text{int}\}. x.l_1 + x.l_2) \{l_2=3; l_1=4\}\]

Suggests permutation subtyping:

\[
\begin{array}{c}
\{l_1: \tau_1; \ldots; l_i: \tau_i; l_{i+1}: \tau_{i+1}; \ldots; l_n: \tau_n\} \\
\leq \{l_1: \tau_1; \ldots; l_{i+1}: \tau_{i+1}; l_i: \tau_i; \ldots; l_n: \tau_n\}
\end{array}
\]

Example with width and permutation:

- Show \(\cdot \vdash \{l_1=7; l_2=8; l_3=9\} : \{l_2: \text{int}; l_1: \text{int}\}\).

It’s no longer clear that there is an (efficient, sound, complete) algorithm. They sometimes exist and sometimes don’t. Here they do.
Reflexivity and Transitivity

Subtyping is always reflexive. There’s a rule for that:

\[\tau \leq \tau \]

Subtyping is always transitive. There’s a rule for that:

\[
\begin{align*}
\tau_1 \leq \tau_2 & \quad \tau_2 \leq \tau_3 \\
\therefore \tau_1 \leq \tau_3
\end{align*}
\]
Reflexivity and Transitivity

Subtyping is always reflexive. There’s a rule for that:

\[\tau \leq \tau \]

Subtyping is always transitive. There’s a rule for that:

\[
\frac{\tau_1 \leq \tau_2 \quad \tau_2 \leq \tau_3}{\tau_1 \leq \tau_3}
\]

Or just use the subsumption rule multiple times.
Reflexivity and Transitivity

Subtyping is always reflexive. There’s a rule for that:

\[\tau \leq \tau \]

Subtyping is always transitive. There’s a rule for that:

\[\tau_1 \leq \tau_2 \quad \tau_2 \leq \tau_3 \quad \Rightarrow \quad \tau_1 \leq \tau_3 \]

Or just use the subsumption rule multiple times.
Or both.
Subtyping, so far

\[
\begin{align*}
\text{Subsumption} & \quad \frac{\Gamma \vdash e : \tau'}{\Gamma \vdash e : \tau} \quad \frac{\tau' \leq \tau}{\frac{\tau_1 \leq \tau_2 \quad \tau_2 \leq \tau_3}{\tau_1 \leq \tau_3}}
\end{align*}
\]

\[
\{l_1:\tau_1; \ldots ; l_n:\tau_n; l:\tau\} \leq \{l_1:\tau_1; \ldots ; l_n:\tau_n\}
\]

\[
\{l_1:\tau_1; \ldots ; l_i:\tau_i; l_{i+1}:\tau_{i+1}; \ldots ; l_n:\tau_n\} \\
\leq \{l_1:\tau_1; \ldots ; l_{i+1}:\tau_{i+1}; l_i:\tau_i; \ldots ; l_n:\tau_n\}
\]

Type checking is no longer syntax-directed!

- May be 0, 1, or many ways to show \(\Gamma \vdash e : \tau\).
- May be 0, 1, or many ways to show \(\tau' \leq \tau\).

Hopefully, we could define an algorithm and prove it finds some derivation iff there exists a derivation.
Efficiency Digression

With our semantics, width and permutation subtyping make perfect sense.

But it would be nice to compile \texttt{e.l} down to:

1. evaluate \texttt{e} to a record stored at an address \texttt{a}
2. load \texttt{a} into a register \texttt{r}_1
3. load field \texttt{l} \textit{from a fixed offset (e.g., 4)} into \texttt{r}_2

Many type systems are engineered to make this easy for compiler writers.

If you do not know techniques for implementing high-level languages, then it may make restrictions seem odd.
Efficiency Digression (continued)

With width subtyping alone, the compilation strategy is easy.
► Can be used (and abused) in C.

With permutation subtyping alone, still easy.
► Have to “alphabetize” fields.
► Used in SML compilers.

With both, it’s not easy . . .

\[
\begin{align*}
 f_1 : \{l_1 : \text{int}\} &\rightarrow \text{int} &
 f_2 : \{l_2 : \text{int}\} &\rightarrow \text{int} \\
 x_1 = \{l_1=0; l_2=0\} & & x_2 = \{l_2=0; l_3=0\} \\
 f_1(x_1) & & f_2(x_1) & & f_2(x_2)
\end{align*}
\]

Can use dictionary-passing (look up offset at run-time) and maybe optimize away (some) lookups.

Named types can avoid this, but make code less flexible.
Subtyping, so far

▶ A new subtyping judgement, with width, permutation, reflexivity, and transitivity rules.
▶ A new typing rule, providing subsumption.

\[
\begin{align*}
\tau \leq \tau \\
\quad \frac{\tau_1 \leq \tau_2 \quad \tau_2 \leq \tau_3}{\tau_1 \leq \tau_3}
\end{align*}
\]

Subsumption

\[
\begin{align*}
&\Gamma \vdash e : \tau' \\
&\tau' \leq \tau \\
\hline
&\Gamma \vdash e : \tau
\end{align*}
\]

\[
\{l_1:\tau_1; \ldots; l_n:\tau_n; l:\tau\} \leq \{l_1:\tau_1; \ldots; l_n:\tau_n\}
\]

\[
\{l_1:\tau_1; \cdots; l_i:\tau_i; l_{i+1}:\tau_{i+1}; \cdots; l_n:\tau_n\} \\
\leq \{l_1:\tau_1; \cdots; l_i:\tau_i; l_{i+1}:\tau_{i+1}; l_i:\tau_i; \cdots; l_n:\tau_n\}
\]

If we extend subtyping so that it can be used on “parts” of larger types, then it will be much more useful:

▶ Example: Can’t yet use subsumption on a record-field’s types.
▶ Example: Aren’t yet any sub- or super-types of \(\tau_a \rightarrow \tau_r\).
Yet another example

Does this program type check? Does this program get stuck?

$$(\lambda x : \{l_1 : \{l_3 : \text{int}\}; l_2 : \text{int}\}. x.l_1.l_3 + x.l_2) \{l_1 = \{l_3 = 3; l_4 = 9\}; l_2 = 4\}$$
Yet another example

Does this program type check? No. Does this program get stuck? No.

\((\lambda x : \{l_1:\{l_3:\text{int}\}; l_2:\text{int}\}. x.l_1.l_3 + x.l_2) \{l_1=\{l_3 = 3; l_4 = 9\}; l_2=4\}\)
Yet another example

Does this program type check? No. Does this program get stuck? No.

\[(\lambda x : \{l_1:\{l_3:\text{int}\}; l_2:\text{int}\}. x.l_1.l_3 + x.l_2) \{l_1=\{l_3 = 3; l_4 = 9\}; l_2=4\}\]

Suggests depth subtyping

\[\tau'_i \leq \tau_i\]

\[\{l_1:\tau_1; \ldots; l_i:\tau'_i; \ldots; l_n:\tau_n\} \leq \{l_1:\tau_1; \ldots; l_i:\tau_i; \ldots; l_n:\tau_n\}\]

Note: with permutation subtyping, could just allow depth on first field.

Soundness of this rule depends crucially on fields being immutable.

▶ Depth subtyping is unsound in the presence of mutation.
▶ Trade-off between power (mutation) and sound expressiveness (depth subtyping).
▶ Next homework will explore mutation and subtyping in more detail.
Function subtyping

Given our rich subtyping on records, how do we extend it to other types, namely $\tau_1 \rightarrow \tau_2$?

For example, we’d like $\text{int} \rightarrow \{l_1:\text{int}; l_2:\text{int}\} \leq \text{int} \rightarrow \{l_1:\text{int}\}$ so that we can pass a function of the subtype somewhere expecting a function of the supertype.
Function subtyping

Given our rich subtyping on records, how do we extend it to other types, namely $\tau_1 \rightarrow \tau_2$?

For example, we’d like $\text{int} \rightarrow \{l_1:\text{int}; l_2:\text{int}\} \leq \text{int} \rightarrow \{l_1:\text{int}\}$ so that we can pass a function of the subtype somewhere expecting a function of the supertype.

\[
\frac{\tau'_a \rightarrow \tau'_r \leq \tau_a \rightarrow \tau_r}{??}
\]
Function subtyping (continued)

Example: \(\lambda x : \{ l_1 \text{: int}; l_2 \text{: int} \}. \{ l_1 = x \cdot l_2; l_2 = x \cdot l_1 \} \)

- “Naturally” has type \(\{ l_1 \text{: int}; l_2 \text{: int} \} \rightarrow \{ l_1 \text{: int}; l_2 \text{: int} \} \)

- Can have type \(\{ l_1 \text{: int}; l_2 \text{: int}; l_3 \text{: int} \} \rightarrow \{ l_1 \text{: int} \} \) (Why?)

- But can not have type \(\{ l_1 \text{: int} \} \rightarrow \{ l_1 \text{: int} \} \) (Why?)

- And can not have type \(\{ l_1 \text{: int}; l_2 \text{: int} \} \rightarrow \{ l_1 \text{: int}; l_2 \text{: int}; l_3 \text{: int} \} \) (Why?)
Function subtyping (continued)

Example: \(\lambda x : \{ l_1 : \text{int}; l_2 : \text{int} \}. \{ l_1 = x \cdot l_2; l_2 = x \cdot l_1 \} \)

- “Naturally” has type \(\{ l_1 : \text{int}; l_2 : \text{int} \} \rightarrow \{ l_1 : \text{int}; l_2 : \text{int} \} \)
- Can have type \(\{ l_1 : \text{int}; l_2 : \text{int}; l_3 : \text{int} \} \rightarrow \{ l_1 : \text{int} \} \) (Why?)
- But can not have type \(\{ l_1 : \text{int} \} \rightarrow \{ l_1 : \text{int} \} \) (Why?)
- And can not have type \(\{ l_1 : \text{int}; l_2 : \text{int} \} \rightarrow \{ l_1 : \text{int}; l_2 : \text{int}; l_3 : \text{int} \} \) (Why?)
Function subtyping (continued)

Example: $\lambda x : \{l_1: \text{int}; l_2: \text{int}\}. \{l_1 = x. l_2; l_2 = x. l_1\}$

- “Naturally” has type $\{l_1: \text{int}; l_2: \text{int}\} \rightarrow \{l_1: \text{int}; l_2: \text{int}\}$
- Can have type $\{l_1: \text{int}; l_2: \text{int}; l_3: \text{int}\} \rightarrow \{l_1: \text{int}\}$ (Why?)
- But can not have type $\{l_1: \text{int}\} \rightarrow \{l_1: \text{int}\}$ (Why?)
- And can not have type $\{l_1: \text{int}; l_2: \text{int}\} \rightarrow \{l_1: \text{int}; l_2: \text{int}; l_3: \text{int}\}$ (Why?)

Therefore:

$$\tau_a \leq \tau'_a \quad \tau'_r \leq \tau_r$$

$$\frac{\tau'_a \rightarrow \tau'_r \leq \tau_a \rightarrow \tau_r}{\tau_a \leq \tau'_a \quad \tau'_r \leq \tau_r}$$

We say function types are

- *contravariant* in their argument
- *covariant* in their result
- (and don’t let anybody tell you otherwise)

(Depth subtyping means immutable records are covariant in their fields.)
Summary of subtyping additions

\[\Gamma \vdash e : \tau \]

\[
\begin{align*}
\Gamma \vdash e : \tau' & \quad \tau' \leq \tau \\
\hline
\Gamma \vdash e : \tau
\end{align*}
\]

\[\tau' \leq \tau \]

\[
\begin{align*}
\frac{\tau_1 \leq \tau_2 \quad \tau_2 \leq \tau_3}{\tau_1 \leq \tau_3} & \quad \frac{\tau_a \leq \tau_a' \quad \tau_r \leq \tau_r'}{\tau_a' \rightarrow \tau_r' \leq \tau_a \rightarrow \tau_r} \\
\end{align*}
\]

\[
\{l_1:\tau_1; \ldots; l_n:\tau_n; l:\tau\} \leq \{l_1:\tau_1; \ldots; l_n:\tau_n\}
\]

\[
\{l_1:\tau_1; \ldots; l_i:\tau_i; l_{i+1}:\tau_{i+1}; \ldots; l_n:\tau_n\} \leq \{l_1:\tau_1; \ldots; l_{i+1}:\tau_{i+1}; l_i:\tau_i; \ldots; l_n:\tau_n\}
\]

\[
\tau_i' \leq \tau_i
\]

\[
\{l_1:\tau_1; \ldots; l_i:\tau_i'; \ldots; l_n:\tau_n\} \leq \{l_1:\tau_1; \ldots; l_i:\tau_i; \ldots; l_n:\tau_n\}
\]
Summary of subtyping additions

More rules for other types:

\[\tau' \leq \tau \]

\[
\frac{\tau_1 \leq \tau'_1}{\tau_1 \cdot \tau_2 \leq \tau'_1 \cdot \tau'_2} \quad \frac{\tau_1 \leq \tau'_1}{\tau_1 + \tau_2 \leq \tau'_1 + \tau'_2}
\]

Both pairs and sums are covariant in their component types.

Matthew Fluet
Programming Language Theory
Lecture 14
Maintaining soundness

Preservation and Progress still “work” in the presence of subsumption.

In theory, any mistakes/bugs in the subtyping rules should be caught when trying to prove soundness!

Things seem too easy …
Maintaining soundness: Progress

Lemma (Progress):
If $\cdot \vdash e : \tau$, then either e is a value
or there exists an e' such that $e \rightarrow_{cbv} e'$.

Proof:
By induction on (the derivation of) $\cdot \vdash e : \tau$.
One new case: The derivation of $\cdot \vdash e : \tau$ ends with subsumption.
Therefore, $\cdot \vdash e : \tau^\dagger$ and $\tau^\dagger \leq \tau$.
By IH applied to $\cdot \vdash e : \tau^\dagger$, we have e is a value or takes a step.
Lemma (Preservation):
If $\cdot \vdash e : \tau$ and $e \rightarrow_{\text{cbv}} e'$, then $\cdot \vdash e' : \tau$.

Proof:
By induction on (the derivation of) $\cdot \vdash e : \tau$.
One new case: The derivation of $\cdot \vdash e : \tau$ ends with subsumption.
Therefore, $\cdot \vdash e : \tau^\dagger$ and $\tau^\dagger \leq \tau$.
By IH applied to $\cdot \vdash e : \tau^\dagger$ w/ $e \rightarrow_{\text{cbv}} e'$, we have $\cdot \vdash e' : \tau^\dagger$.
Use subsumption with $\cdot \vdash e' : \tau^\dagger$ and $\tau^\dagger \leq \tau$ to derive $\cdot \vdash e' : \tau$.
Maintaining soundness: Canonical Forms

Things were easy with Progress and Preservation, because Canonical Forms is where the action is:

- If \(\cdot \vdash v : \{ l_1 : \tau_1 ; \ldots ; l_n : \tau_n \} \), then \(v \) is a record with fields \(l_1, \ldots, l_n \).
- If \(\cdot \vdash v : \tau_a \rightarrow \tau_r \), then \(v \) is a function.

Proof is now by induction on typing derivation

- (may end with many subsumptions)

and induction on the subtyping derivation

- ("going up the subtyping derivation" only adds fields)

Note: CF is typically trivial without subtyping; now it requires some work.
Subtyping: a matter of opinion?

If subtyping makes well-typed terms get stuck, then it is *wrong*!

We might allow less subtyping (for efficiency), but we *never* allow more subtyping than is sound.

We have been discussing “subset semantics”:

- \(\vdash e : \tau' \) and \(\tau' \leq \tau \) means \(e \) “is” a \(\tau \).
- There are “fewer” values of type \(\tau' \) than of type \(\tau \).
- The set of values of type \(\tau' \) is a *subset* of the set of values of type \(\tau \).

Very tempting to go beyond this interpretation (and some languages do so), but one must be very careful . . .

One nice property of our current setup:

- *Types never affected run-time behavior.*
Erasure

Types never affected run-time behavior.

- A program is well-typed or it is not.
- A well-typed program evaluates just like in the untyped LC.

More formally, we have:

- Our language with types (e.g., $\lambda x : \tau. \ e$, $L_{\tau_1 + \tau_2}(e)$, etc.) and an operational semantics
- Our language without types (e.g., $\lambda x. \ e$, $L(e)$, etc.) and a different (but very similar) operational semantics
- An erasure metafunction from first language to second: $E[\cdot]$
- An equivalence theorem: Erasure commutes with evaluation.

$$e \rightarrow_{\text{typed}} e' \quad \text{iff} \quad E[e] \rightarrow_{\text{untyped}} E[e']$$

This useful (for reasoning and efficiency) fact will be less obvious (but true) with parametric polymorphism.
Coercion Semantics

But, wouldn’t it be great if . . .

- \(\text{int} \leq \text{float} \)
- \(\text{int} \leq \{l_1:\text{int}\} \)
- \(\tau \leq \text{string} \)

For each of these proposed \(\tau' \leq \tau \) relationships, we need a run-time action to turn a \(\tau' \) into a \(\tau \). Called a *coercion*.

Programmers could use \(\text{intToFloat} \) and \(\text{toString} \) and similar (but they whine about it).
Implementing Coercions

If coercion C (e.g., `intToFloat`) “witnesses” $\tau' \leq \tau$ (e.g., `int \leq float`), then we insert C when using $\tau' \leq \tau$ with subsumption.

Translation to the untyped lang. depends on where subsumption is used. So, translation is really from typing derivations to programs.

And typing derivations aren’t unique (problem?!?).
Implementing Coercions

If coercion C (e.g., intToFloat) “witnesses” $\tau' \leq \tau$ (e.g., $\text{int} \leq \text{float}$), then we insert C when using $\tau' \leq \tau$ with subsumption.

Translation to the untyped lang. depends on where subsumption is used. So, translation is really from typing derivations to programs.

And typing derivations aren’t unique (problem?!?).

Example 1

▶ Suppose $\text{int} \leq \text{float}$ and $\tau \leq \text{string}$.
▶ Consider $\cdot \vdash \text{print_string}(34) : \text{unit}$.

Example 2

▶ Suppose $\text{int} \leq \{ l_1 : \text{int} \}$.
▶ Consider $34 == 34$ (where $==$ is bit-equality on integers or pointers).
Coherence

Coercions need to be coherent, meaning they don’t have these problems. (More formally, programs are deterministic even though type checking is not: any typing derivation for e translates to an equivalent program.)

- Hard to verify, if coercions are arbitrary code.

Alternatively, try to eliminate incoherence with (complicated) rules about where subsumption occurs and which subtyping rules take precedence.

- Hard to understand and predict.

It’s a mess...

- Which probably means its wrong...
Incoherence in C++, Java

Semi-Example: Multiple inheritance a la C++.

class C2 { };
class C3 { };
class C1 : public C2, public C3 { };
class D {
 public: int f(class C2) { return 0; }
 int f(class C3) { return 1; }
};
int main() { return D().f(C1()); }

Note: A compile-time error ("ambiguous call")
Note: Same in Java with interfaces ("reference is ambiguous")
Subtyping: Upcasts and Downcasts

- “Subset” subtyping allows “upcasts”
- “Coercive subtyping” allows casts with run-time effect
- What about “downcasts”?

Roughly, if at run-time \(e \) has type \(\tau \) (or a subtype), then bind it to \(x \) and evaluate \(e_t \). Else evaluate \(e_f \).

(Avoids having exceptions.)

How would you write the type system rule?

Hint: Why do we need \(x \) bound in \(e_t \)?

How would you write the operational semantics rule?
Subtyping: Upcasts and Downcasts

- “Subset” subtyping allows “upcasts”
- “Coercive subtyping” allows casts with run-time effect
- What about “downcasts”?
 That is, should we have something like:

\[
\text{typecase } e \text{ of } \tau(x) \Rightarrow e_t \mid \text{otherwise } \Rightarrow e_f
\]

Roughly, if at run-time \(e \) has type \(\tau \) (or a subtype), then bind it to \(x \) and evaluate \(e_t \). Else evaluate \(e_f \).
(Avoids having exceptions.)

How would you write the type system rule?

- Hint: Why do we need \(x \) bound in \(e_t \)?

How would you write the operational semantics rule?
Subtyping: Downcasts

Hard to deny that downcasts exist.

But (like coercive subtyping), some bad things:

▶ Types don’t erase:
 ▶ Need to represent τ and e’s type at run-time.
 ▶ (Hidden data fields.)
▶ Breaks abstractions:
 ▶ Without downcasts, passing $\{l_1 = 3, l_2 = 4\}$ to a function taking $\{l_1 : \text{int}\}$ hid the l_2 field.
 ▶ No way for function to access the l_2 field.

Some better alternatives:

▶ Use ML-style datatypes:
 ▶ Programmer decides which data should have tags.
▶ Use parametric polymorphism:
 ▶ The right way to do container types (not downcasting results).