Programming Language Theory

Evaluation Contexts, First-Class Continuations, and Continuation-Passing-Style
Type Systems Respite

Let’s spend one lecture on a somewhat different topic.

▶ How operational semantics can be defined more concisely, and how they can be related to abstract machines.
▶ How lambda-calculus can be extended with *first-class continuations*, a powerful *control operator*.
▶ Some programming idioms related to these concepts.
(Simply-Typed) Lambda Calculus with Extensions (pairs, sums, fix)

Syntax:

\[
e ::= \lambda x. e \mid x \mid e \ e \mid (e,e) \mid e.1 \mid e.2 \mid L(e) \mid R(e) \mid \text{case } e \text{ of } L(x) \Rightarrow e \mid R(y) \Rightarrow e \mid \text{fix } e
\]

\[
v ::= \lambda x. e \mid (v,v) \mid L(v) \mid R(v)
\]
(Simply-Typed) Lambda Calculus with Extensions (pairs, sums, fix)

Small-step, call-by-value (CBV), left-to-right operational semantics:

\[
\begin{align*}
\frac{e_f \rightarrow_{cbv} e'_f}{e_f \, e_a \rightarrow_{cbv} e'_f \, e_a} & \quad \frac{e_a \rightarrow_{cbv} e'_a}{v_f \, e_a \rightarrow_{cbv} v_f \, e'_a} & \quad (\lambda x. e_b) \, v_a \rightarrow_{cbv} e_b[v_a/x] \\
\frac{e_1 \rightarrow_{cbv} e'_1}{(e_1, e_2) \rightarrow_{cbv} (e'_1, e_2)} & \quad \frac{e_2 \rightarrow_{cbv} e'_2}{(v_1, e_2) \rightarrow_{cbv} (v'_1, e'_2)} \\
\frac{e_p \rightarrow_{cbv} e'_p}{e_p \cdot 1 \rightarrow_{cbv} e'_p \cdot 1} & \quad \frac{e_p \rightarrow_{cbv} e'_p}{(v_1, v_2) \cdot 1 \rightarrow_{cbv} v_1} & \quad \frac{e_p \rightarrow_{cbv} e'_p}{e_p \cdot 2 \rightarrow_{cbv} e'_p \cdot 2} & \quad (v_1, v_2) \cdot 2 \rightarrow_{cbv} v_2 \\
\frac{e_s \rightarrow_{cbv} e'_s}{\text{case } e_s \text{ of } L(x) \Rightarrow e_l | R(y) \Rightarrow e_r \rightarrow_{cbv} \text{ case } e'_s \text{ of } L(x) \Rightarrow e_l | R(y) \Rightarrow e_r} \\
\frac{e_1 \rightarrow_{cbv} e'_1}{\text{case } L(v_1) \text{ of } L(x) \Rightarrow e_l | R(y) \Rightarrow e_r \rightarrow_{cbv} e_l[v_1/x]} \\
\frac{e_2 \rightarrow_{cbv} e'_2}{\text{case } R(v_2) \text{ of } L(x) \Rightarrow e_l | R(y) \Rightarrow e_r \rightarrow_{cbv} e_r[v_2/y]} \\
\frac{e_f \rightarrow_{cbv} e'_f}{\text{fix } e_f \rightarrow_{cbv} \text{ fix } e'_f} & \quad \frac{\text{fix } (\lambda x. e_b) \rightarrow_{cbv} e_b[\text{fix } (\lambda x. e_b)/x]}{}
\end{align*}
\]
(Simply-Typed) Lambda Calculus with Extensions (pairs, sums, fix)

Small-step, *call-by-value (CBV)*, left-to-right operational semantics:

\[
\begin{align*}
\text{Small-step, call-by-value (CBV), left-to-right operational semantics:} \\
\frac{e_f \rightarrow_{cbv} e_f'}{e_f \ e_a \rightarrow_{cbv} e_f' \ e_a} & \quad \frac{e_a \rightarrow_{cbv} e_a'}{v_f \ e_a \rightarrow_{cbv} v_f \ e_a'} & \quad (\lambda x. \ e_b) \ v_a \rightarrow_{cbv} e_b[v_a/x] \\
\frac{e_1 \rightarrow_{cbv} e_1'}{(e_1, e_2) \rightarrow_{cbv} (e_1', e_2)} & \quad \frac{e_2 \rightarrow_{cbv} e_2'}{(v_1, e_2) \rightarrow_{cbv} (v_1', e_2')} \\
\frac{e_p \rightarrow_{cbv} e_p'}{e_p.1 \rightarrow_{cbv} e_p'.1} & \quad \frac{(v_1, v_2).1 \rightarrow_{cbv} v_1}{e_p \rightarrow_{cbv} e_p'} & \quad \frac{(v_1, v_2).2 \rightarrow_{cbv} v_2}{e_p \rightarrow_{cbv} e_p'} \\
\frac{e_s \rightarrow_{cbv} e_s'}{\text{case } e_s \text{ of } L(x) => e_l | R(y) => e_r \rightarrow_{cbv} \text{ case } e_s' \text{ of } L(x) => e_l | R(y) => e_r} \\
\frac{e_1 \rightarrow_{cbv} e_1'}{L(e_1) \rightarrow_{cbv} L(e_1')} & \quad \frac{e_2 \rightarrow_{cbv} e_2'}{R(e_2) \rightarrow_{cbv} R(e_2')} \\
\frac{e_f \rightarrow_{cbv} e_f'}{\text{fix } e_f \rightarrow_{cbv} \text{ fix } e_f'} & \quad \frac{\text{fix } (\lambda x. \ e_b) \rightarrow_{cbv} e_b[\text{fix } (\lambda x. \ e_b)/x]}{\text{case } L(v_1) \text{ of } L(x) => e_l | R(y) => e_r \rightarrow_{cbv} e_l[v_1/x]} \\
\quad \frac{\text{case } R(v_2) \text{ of } L(x) => e_l | R(y) => e_r \rightarrow_{cbv} e_r[v_2/y]}{}
\end{align*}
\]

Note: lots of "boring inductive rules" with some "interesting do-work rules"
(Simply-Typed) Lambda Calculus with Extensions (pairs, sums, fix)

Small-step, call-by-value (CBV), left-to-right operational semantics:

\[
\begin{align*}
& e_f \rightarrow_{\text{cbv}} e'_f \\
& e_f e_a \rightarrow_{\text{cbv}} e'_f e_a \\
& e_a \rightarrow_{\text{cbv}} e'_a \\
& v_f e_a \rightarrow_{\text{cbv}} v_f e'_a \\
& (\lambda x. e_b) v_a \rightarrow_{\text{cbv}} e_b[v_a/x]
\end{align*}
\]

\[
\begin{align*}
& e_1 \rightarrow_{\text{cbv}} e'_1 \\
& (e_1, e_2) \rightarrow_{\text{cbv}} (e'_1, e_2) \\
& e_2 \rightarrow_{\text{cbv}} e'_2 \\
& (v_1, e_2) \rightarrow_{\text{cbv}} (v_1, e'_2)
\end{align*}
\]

\[
\begin{align*}
& e_p \rightarrow_{\text{cbv}} e'_p \\
& e_p \cdot 1 \rightarrow_{\text{cbv}} e'_p \cdot 1 \\
& (v_1, v_2) \cdot 1 \rightarrow_{\text{cbv}} v_1 \\
& e_p \rightarrow_{\text{cbv}} e'_p \\
& e_p \cdot 2 \rightarrow_{\text{cbv}} e'_p \cdot 2 \\
& (v_1, v_2) \cdot 2 \rightarrow_{\text{cbv}} v_2
\end{align*}
\]

\[
\begin{align*}
& e_s \rightarrow_{\text{cbv}} e'_s \\
& \text{case } e_s \text{ of } L(x) = \Rightarrow e_l | R(y) = \Rightarrow e_r \rightarrow_{\text{cbv}} \text{case } e'_s \text{ of } L(x) = \Rightarrow e_l | R(y) = \Rightarrow e_r
\end{align*}
\]

\[
\begin{align*}
& e_1 \rightarrow_{\text{cbv}} e'_1 \\
& L(e_1) \rightarrow_{\text{cbv}} L(e'_1) \\
& e_2 \rightarrow_{\text{cbv}} e'_2 \\
& R(e_2) \rightarrow_{\text{cbv}} R(e'_2)
\end{align*}
\]

\[
\begin{align*}
& \text{case } L(v_1) \text{ of } L(x) = \Rightarrow e_l | R(y) = \Rightarrow e_r \rightarrow_{\text{cbv}} e_l[v_1/x]
\end{align*}
\]

\[
\begin{align*}
& \text{case } R(v_2) \text{ of } L(x) = \Rightarrow e_l | R(y) = \Rightarrow e_r \rightarrow_{\text{cbv}} e_r[v_2/y]
\end{align*}
\]

\[
\begin{align*}
& e_f \rightarrow_{\text{cbv}} e'_f \\
& \text{fix } e_f \rightarrow_{\text{cbv}} \text{fix } e'_f \\
& \text{fix } (\lambda x. e_b) \rightarrow_{\text{cbv}} e_b[\text{fix } (\lambda x. e_b)/x]
\end{align*}
\]

Note: lots of “boring inductive rules”
(Simply-Typed) Lambda Calculus with Extensions (pairs, sums, fix)

Small-step, *call-by-value (CBV)*, left-to-right operational semantics:

\[
\begin{align*}
\text{ef} & \to_{cbv} e_f' \\
\text{ef ea} & \to_{cbv} e_f' e_a \\
\text{ea} & \to_{cbv} e_a' \\
\text{vf ea} & \to_{cbv} v_f e_a' \\
(\lambda x. \text{eb}) v_a & \to_{cbv} \text{eb}[v_a/x] \\
\text{e1} & \to_{cbv} e_1' \\
(\text{e1}, \text{e2}) & \to_{cbv} (e_1', e_2') \\
\text{e2} & \to_{cbv} e_2' \\
(\text{v1}, \text{e2}) & \to_{cbv} (v_1, e_2') \\
\text{ep} & \to_{cbv} e_p' \\
\text{ep.1} & \to_{cbv} e_p'.1 \\
(\text{v1}, \text{v2}).1 & \to_{cbv} v_1 \\
\text{ep.2} & \to_{cbv} e_p'.2 \\
(\text{v1}, \text{v2}).2 & \to_{cbv} v_2 \\
\text{es} & \to_{cbv} e_s' \\
\text{case es of L(x) => e_l | R(y) => e_r} & \to_{cbv} \text{case e_s' of L(x) => e_l | R(y) => e_r} \\
\text{e1} & \to_{cbv} e_1' \\
\text{L(e1)} & \to_{cbv} \text{L(e1')} \\
\text{e2} & \to_{cbv} e_2' \\
\text{R(e2)} & \to_{cbv} \text{R(e2')} \\
\text{fix ef} & \to_{cbv} \text{fix e_f'} \\
\text{fix (\lambda x. \text{eb})} & \to_{cbv} \text{eb[fix (\lambda x. \text{eb})/x]} \\
\end{align*}
\]

Note: lots of “boring inductive rules” with some “interesting do-work rules”
Rethinking Small-Step Operational Semantics

Every $e \rightarrow_{\text{cbv}} e'$ derivation uses some "boring inductive rules" and one "interesting do-work rule".

Therefore, executing a program works like:

- Find the next “primitive step”
 - (function application, pair selection, case dispatch, recursion unrolling)
- Perform that “primitive step”
- Plug the result back into the rest of the program
- Repeat (next “primitive step” could be at a new place)
- Until program is a value (or is “stuck”)

Move the first step out and produce a data structure that describes where the next “primitive step” occurs.
Evaluation Contexts

Define evaluation contexts:

- expressions with one “hole” where the “interesting work” may occur

\[
E ::= \cdot | E \ e | v \ E | (E, e) | (v, E) | E.1 | E.2 | L(E) | R(E) | \text{case } E \text{ of } L(x) \Rightarrow e | R(y) \Rightarrow e | \text{fix } E
\]

Define “filling the hole” \(E[e] \) in the obvious way.

- A metafunction of type EvalContext \(\rightarrow \) Exp \(\rightarrow \) Exp

Semantics now uses two judgements \(e \rightarrow_{cbvc} e' \) and \(e \xrightarrow{p}_{cbvc} e' \), but the former has only 1 rule and the latter has just the “interesting work”.
Evaluation Contexts

\[e \rightarrow_{\text{cbvc}} e' \]

\[e = E[e_a] \quad e_a \xrightarrow{p}_{\text{cbvc}} e_a' \quad E[e_a'] = e' \]
\[e \rightarrow_{\text{cbvc}} e' \]

\[(\lambda x. e_b) \ x \xrightarrow{p}_{\text{cbvc}} e_b[v_a/x] \]

\[(v_1, v_2).1 \xrightarrow{p}_{\text{cbvc}} v_1 \]
\[(v_1, v_2).2 \xrightarrow{p}_{\text{cbvc}} v_2 \]

case L(v_1) of L(x) \Rightarrow e_l | R(y) \Rightarrow e_r \xrightarrow{p}_{\text{cbvc}} e_l[v_1/x] \]

\[\text{case R}(v_2) \text{ of } L(x) \Rightarrow e_l | R(y) \Rightarrow e_r \xrightarrow{p}_{\text{cbvc}} e_r[v_2/y] \]

\[\text{fix } (\lambda x. e_b) \xrightarrow{p}_{\text{cbvc}} e_b[\text{fix } (\lambda x. e_b)/x] \]
Evaluation Contexts

\[e \xrightarrow{cbvc} e' \]

\[
\frac{e_a \xrightarrow{p} e'_a}{E[e_a] \xrightarrow{cbvc} E[e'_a]}
\]

\[e \xrightarrow{p} e' \]

\[
\frac{(\lambda x. e_b) v_a \xrightarrow{p} e_b[v_a/x]}{(v_1, v_2).1 \xrightarrow{p} v_1}
\]

\[
\frac{(v_1, v_2).2 \xrightarrow{p} v_2}{\text{case } L(v_1) \text{ of } L(x) \Rightarrow e_l \mid R(y) \Rightarrow e_r \xrightarrow{p} e_l[v_1/x]}
\]

\[
\frac{\text{case } R(v_2) \text{ of } L(x) \Rightarrow e_l \mid R(y) \Rightarrow e_r \xrightarrow{p} e_r[v_2/y]}{\text{fix } (\lambda x. e_b) \xrightarrow{p} e_b[\text{fix } (\lambda x. e_b)/x]}
\]
Evaluation Contexts: So what?

Thus far, all we have done is rearrange our semantics to be more concise.
▶ Each boring rule becomes a form of E

Evaluation relies on decomposition:
▶ Given e, find an E, e_a, e'_a such that $e = E[e_a]$ and $e_a \xrightarrow{p}_{cbvc} e'_a$.

Theorem (Unique Decomposition): For all e, there is at most one decomposition of e into an E and e_a (such that $e_a \xrightarrow{p}_{cbvc} e'_a$).
▶ When is there no decomposition?
Evaluation Contexts: So what?

Thus far, all we have done is rearrange our semantics to be more concise.

- Each boring rule becomes a form of E

Evaluation relies on decomposition:

- Given e, find an E, e_a, e'_a such that $e = E[e_a]$ and $e_a \xrightarrow{p}_{\text{cbvc}} e'_a$.

Theorem (Unique Decomposition): For all e, there is at most one decomposition of e into an E and e_a (such that $e_a \xrightarrow{p}_{\text{cbvc}} e'_a$).

- When is there no decomposition?

Unique Decomposition means that

- Evaluation is deterministic

- Progress (restated): If e is well-typed, then e is a value or there is a decomposition of e.
Evaluation Contexts

In fact, don’t even need two judgements:

\[e \rightarrow_{cbvc} e' \]

\[
E[(\lambda x. e_b) v_a] \rightarrow_{cbvc} E[e_b[v_a/x]]
\]

\[
E[(v_1, v_2).1] \rightarrow_{cbvc} E[v_1]
\]

\[
E[(v_1, v_2).2] \rightarrow_{cbvc} E[v_2]
\]

\[
E[\text{case } L(v_1) \text{ of } L(x) => e_l \mid R(y) => e_r] \rightarrow_{cbvc} E[e_l[v_1/x]]
\]

\[
E[\text{case } R(v_2) \text{ of } L(x) => e_l \mid R(y) => e_r] \rightarrow_{cbvc} E[e_r[v_2/y]]
\]

\[
E[\text{fix } (\lambda x. e_b)] \rightarrow_{cbvc} E[e_b[\text{fix } (\lambda x. e_b)/x]]
\]
Evaluation Contexts: So what?

Small-step semantics (old) and evaluation-context semantics (new) are very similar:

- $e \rightarrow_{\text{cbv}} e'$ if and only if $e \rightarrow_{\text{cbVC}} e'$. (total equivalence of \rightarrow_{cbv} and $\rightarrow_{\text{cbVC}}$ semantics)

- Just rearranged things to be more concise:
 each boring rule became a form of E
 (Proofs aren't necessarily any easier; will often need induction on E.)

- Both “work” the same way:
 - Find the next “primitive step”
 (function application, pair selection, case dispatch, recursion unrolling)
 - Perform that “primitive step”
 - Plug the result back into the rest of the program
 - Repeat (next “primitive step” could be at a new place)
 - Until program is a value (or is “stuck”)

Evaluation contexts so far just cleanly separate the “find and plug” from the “perform that primitive step” by building an explicit E.
But, now that we have defined E explicitly in our metalanguage, what happens if we allow E in our language:

- Moving from metalanguage to language is called *reification*
- Programs (in language) might save and restore evaluation contexts

Sufficient for

- Exceptions
- Cooperative threads / coroutines / iterators
- “Time travel” with stacks
- *setjmp/longjmp*
First-class Continuations

First-class continuations in one slide:

\[
\begin{align*}
e & ::= \ldots \mid \text{letcc } x \cdot e \mid \text{throw } e e \mid \text{cont } E \\
v & ::= \ldots \mid \text{cont } E \\
E & ::= \ldots \mid \text{throw } E e \mid \text{throw } v E
\end{align*}
\]

\[
E[\text{letcc } x \cdot e] \rightarrow_{\text{cbvc}} E[e[\text{cont } E/x]]
\]

\[
E[\text{throw } (\text{cont } E') v] \rightarrow_{\text{cbvc}} E'[v]
\]

- letcc \(x \cdot e \) gets the current evaluation context ("grab the stack")
- throw \((\text{cont } E') v \) restores an old evaluation context ("jump somewhere")
- cont \(E \) stores an evaluation context as a value ("saved stack")
 - cont \(E \) shouldn’t appear in source programs
Examples: Exception-like

\[
\text{letcc } k. (\text{throw } k \ 3) \rightarrow_{\text{cbvc}} ^* \\
\text{letcc } k. \ 3 \rightarrow_{\text{cbvc}} ^* \\
1 + (\text{letcc } k. (\text{throw } k \ (3 + 5))) \rightarrow_{\text{cbvc}} ^* \\
1 + (\text{letcc } k. (3 + \text{throw } k \ 5)) \rightarrow_{\text{cbvc}} ^* \\
1 + (\text{letcc } k. (\text{throw } k \ (\text{throw } k \ (\text{throw } k \ 3)))) \rightarrow_{\text{cbvc}} ^*
\]
Examples: Exception-like

\[\text{letcc } k. (\text{throw } k \ 3) \rightarrow_{\text{cbvc}}^* 3 \]

\[\text{letcc } k. \ 3 \rightarrow_{\text{cbvc}}^* \]

\[1 + (\text{letcc } k. (\text{throw } k \ (3 + 5))) \rightarrow_{\text{cbvc}}^* \]

\[1 + (\text{letcc } k. (3 + \text{throw } k \ 5)) \rightarrow_{\text{cbvc}}^* \]

\[1 + (\text{letcc } k. (\text{throw } k \ (\text{throw } k \ (\text{throw } k \ 3)))) \rightarrow_{\text{cbvc}}^* \]
Examples: Exception-like

\[
\text{letcc } k. (\text{throw } k \; 3) \rightarrow_{\text{cbvc}} 3
\]

\[
\text{letcc } k. \; 3 \rightarrow_{\text{cbvc}} 3
\]

\[
1 + (\text{letcc } k. \; (\text{throw } k \; (3 + 5))) \rightarrow_{\text{cbvc}}
\]

\[
1 + (\text{letcc } k. \; (3 + \text{throw } k \; 5)) \rightarrow_{\text{cbvc}}
\]

\[
1 + (\text{letcc } k. \; (\text{throw } k \; (\text{throw } k \; (\text{throw } k \; 3)))) \rightarrow_{\text{cbvc}}
\]
Examples: Exception-like

\[
\text{letcc } k. (\text{throw } k \ 3) \rightarrow_{\text{cbvc}} 3
\]

\[
\text{letcc } k. 3 \rightarrow_{\text{cbvc}} 3
\]

\[
1 + (\text{letcc } k. (\text{throw } k \ (3 + 5))) \rightarrow_{\text{cbvc}} 9
\]

\[
1 + (\text{letcc } k. (3 + \text{throw } k \ 5)) \rightarrow_{\text{cbvc}}
\]

\[
1 + (\text{letcc } k. (\text{throw } k \ (\text{throw } k \ (\text{throw } k \ 3)))) \rightarrow_{\text{cbvc}}
\]
Examples: Exception-like

\[
\text{letcc } k. (\text{throw } k \ 3) \rightarrow_{\text{cbvc}}^* 3
\]

\[
\text{letcc } k. \ 3 \rightarrow_{\text{cbvc}}^* 3
\]

\[
1 + (\text{letcc } k. (\text{throw } k \ (3 + 5))) \rightarrow_{\text{cbvc}}^* 9
\]

\[
1 + (\text{letcc } k. (3 + \text{throw } k \ 5)) \rightarrow_{\text{cbvc}}^* 6
\]

\[
1 + (\text{letcc } k. (\text{throw } k \ (\text{throw } k \ (\text{throw } k \ 3)))) \rightarrow_{\text{cbvc}}^* 4
\]
Examples: Exception-like

\[
\text{letcc } k. \ (\text{throw } k \ 3) \rightarrow_{\text{cbvc}} 3
\]

\[
\text{letcc } k. \ 3 \rightarrow_{\text{cbvc}} 3
\]

\[
1 + (\text{letcc } k. \ (\text{throw } k \ (3 + 5))) \rightarrow_{\text{cbvc}} 9
\]

\[
1 + (\text{letcc } k. \ (3 + \text{throw } k \ 5)) \rightarrow_{\text{cbvc}} 6
\]

\[
1 + (\text{letcc } k. \ (\text{throw } k \ (\text{throw } k \ (\text{throw } k \ 3)))) \rightarrow_{\text{cbvc}} 4
\]
Example: “Time travel”-like

SML/NJ has first-class continuations:

```plaintext
open SMLofNJ.Cont
val x = ref true (* avoids infinite loop *)
val g : int cont option ref = ref NONE
val y = ref (1 + 2 + (callcc (fn k => ((g := SOME k); 3))))
val z = if !x then (x := false; throw (valOf (!g)) 7) else !y
val _ = print ("z = " ^ (Int.toString z))
```

What would happen if we didn’t use the `x` mutable reference?
Example: “Time travel”-like

SML/NJ has first-class continuations:

```sml
open SMLofNJ.Cont
val x = ref true (* avoids infinite loop *)
val g : int cont option ref = ref NONE
val y = ref (1 + 2 + (callcc (fn k => ((g := SOME k); 3)))))
val z = if !x then (x := false; throw (valOf (!g)) 7) else !y
val _ = print ("z = " ^ (Int.toString z))
```

```
z = 10
```

What would happen if we didn’t use the `x` mutable reference?
Are Continuations Useful?

- **Exceptions**
 - `letcc x. e` for `e` handle `_` => `e'`
 - `throw x e'` for `raise in e`
 - (the `x` thrown to must be the `x` captured; simpler with a global reference)

- **Coroutines**
 - `yield` captures the continuation (the “how to resume me”) and throws it to the other’s “how to resume me”

- **Cooperative threads**
 - Generalize coroutines; each `yield` is to thread scheduler (but thread scheduler implemented in language, not runtime system)

- **Other crazy things**
 - The “goto of functional programming” — incredibly powerful, but non-standard uses are usually inscrutable
 - Key point is that we can “jump back”, unlike exceptions
 - Close connections with recent research on “algebraic effects” (almost all computational effects can be implemented with continuations)
Another View

If you’re confused, think call stacks:

- What if your favorite language had these operations:
 - Store current stack in \(x \)
 - Replace current stack with stack in \(x \)

- Need to “resume the stack’s hole” with something different or when mutable state is different
- (else, you will have an infinite loop)
First-class Continuations

First-class continuations in one slide:

\[
\begin{align*}
 e & ::= \cdots \mid \text{letcc } x.\ e \mid \text{throw } e\ e \mid \text{cont } E \\
 v & ::= \cdots \mid \text{cont } E \\
 E & ::= \cdots \mid \text{throw } E\ e \mid \text{throw } v\ E
\end{align*}
\]

\[
\begin{align*}
 E[\text{letcc } x.\ e] & \rightarrow_{\text{cbvc}} E[\text{e[cont } E/x]] \\
 E[\text{throw } (\text{cont } E')\ v] & \rightarrow_{\text{cbvc}} E'[v]
\end{align*}
\]

We’ve extended the syntax and operational semantics, now it’s time to extend the type system.
First-class Continuations

First-class continuations in one slide:

\[
\begin{align*}
e & ::= \cdots | \text{letcc } x. \ e | \text{throw } e \ e | \text{cont } E \\
v & ::= \cdots | \text{cont } E \\
E & ::= \cdots | \text{throw } E \ e | \text{throw } v \ E \\
\tau & ::= \cdots | \text{cont } \tau
\end{align*}
\]
First-class Continuations

First-class continuations in one slide:

\[
\begin{align*}
e & ::= \cdots \mid \text{letcc } x.\ e \mid \text{throw } e\ e \mid \text{cont } E \\
v & ::= \cdots \mid \text{cont } E \\
E & ::= \cdots \mid \text{throw } E\ e \mid \text{throw } v\ E \\
\tau & ::= \cdots \mid \text{cont } \tau
\end{align*}
\]

\[
\begin{align*}
\Gamma, x : \text{cont } \tau_a \vdash e_b : \tau_a & \quad \Gamma \vdash e_k : \text{cont } \tau_a \quad \Gamma \vdash e_a : \tau_a \\
\Gamma \vdash \text{letcc } x.\ e_b : \tau_a & \quad \Gamma \vdash \text{throw } e_k\ e_a : \tau \\
x \notin FV(E) & \quad \cdot, x : \tau_a \vdash E[x] : \tau \\
\Gamma \vdash \text{cont } E : \text{cont } \tau_a
\end{align*}
\]
Connection to Interpreters

A “real” (efficient, natural) interpreter for Lambda Calculus (or ML) would not be like our small-step operational semantics

▶ Would decompose/plug the whole program for each step!

Instead, maintain the decomposition incrementally

▶ With a stack \((S)\) of frames \((F)\) to remember “what to work on next”!

\[
F ::= \cdot \ e \mid v \cdot \mid (\cdot, e) \mid (v, \cdot) \mid \cdot \cdot \cdot \cdot 1 \mid \cdot \cdot \cdot \cdot 2 \mid \ \\
L(\cdot) \mid R(\cdot) \mid \text{case } \cdot \text{ of } L(x) \Rightarrow e \mid R(y) \Rightarrow e
\]

\[
S ::= [] \mid F :: S
\]

\[
e; S \rightarrow e'; S'
\]

The CK machine; one of very many “abstract machines”.
Now individual frames are explicit; one can do really weird things (but we won’t).
Living without `letcc x. e, throw e e, and cont E`

Remember, the (Untyped) Lambda Calculus could *encode* all of the features of the (Untyped) Lambda Calculus with Extensions (pairs, sums, fix).

So, Lambda Calculus w/ Extensions (without `letcc x. e, throw e e, and cont E`) isn’t any more powerful than Lambda Calculus.

Is Lambda Calculus w/ Extensions *with* `letcc x. e, throw e e, and cont E` more powerful than Lambda Calculus?
Living without `letcc x. e, throw e e, and cont E`

Remember, the (Untyped) Lambda Calculus could *encode* all of the features of the (Untyped) Lambda Calculus with Extensions (pairs, sums, fix).

So, Lambda Calculus w/ Extensions (without `letcc x. e, throw e e, and cont E`) isn’t any more powerful than Lambda Calculus.

Is Lambda Calculus w/ Extensions *with* `letcc x. e, throw e e, and cont E` more powerful than Lambda Calculus?

» Couldn’t be — Lambda Calculus is *Turing complete*
Living without letcc $x. e$, throw $e e$, and cont E

Remember, the (Untyped) Lambda Calculus could encode all of the features of the (Untyped) Lambda Calculus with Extensions (pairs, sums, fix).

So, Lambda Calculus w/ Extensions (without letcc $x. e$, throw $e e$, and cont E) isn’t any more powerful than Lambda Calculus.

Is Lambda Calculus w/ Extensions with letcc $x. e$, throw $e e$, and cont E more powerful than Lambda Calculus?

- Couldn’t be — Lambda Calculus is *Turing complete*

Can we encode first-class continuations?
Living without \texttt{letcc} \(x\). \(e\), \texttt{throw} \(e\) \(e\), and \texttt{cont} \(E\)

Can we \textit{encode} first-class continuations?

Yes: Rather than adding a powerful feature, we can achieve the same effect via a \textit{whole-program translation} from the Lambda Calculus into a sublanguage (source-to-source transformation).

- No expressions with non-trivial evaluation contexts
- Every expression becomes a continuation-accepting function
- Never “return” — instead, call the current continuation
- \texttt{(Re)Introduce} \texttt{letcc} \(x\). \(e\) and \texttt{throw} \(e\) \(e\) as \(O(1)\) operations
Continuation-Passing-Style Transformation

Intuition:

- Pass the current continuation to every expression
- Represent the current continuation as a function \((\lambda z. E[z])\)
 - The initial continuation is the identity function \((\lambda z. z)\)
- To return a value, apply the current continuation to the value
 - Functions must take an explicit continuation argument
 - Function result sent to the current cont. of the function application
- \texttt{letcc k. e} and \texttt{throw e e} translated away
 - “Funny” manipulations of continuation functions

The target of the transformation is Lambda Calculus w/ Extensions, which we can further encode down to Lambda Calculus.
Continuation-Passing-Style (CPS) Transformation

A metafunction from expressions to expressions.

\[
\begin{align*}
\text{CPS} [e] & \equiv \text{CPS}_{e}[e] (\lambda z. z) \\
\text{CPS}_{e}[x] & \equiv \lambda k. k \ x \\
\text{CPS}_{e}[\lambda x. e] & \equiv \lambda k. k (\lambda k'. \lambda x. \text{CPS}_{e}[e] k') \\
\text{CPS}_{e}[e_1 \ e_2] & \equiv \lambda k. \text{CPS}_{e}[e_1] (\lambda f. \text{CPS}_{e}[e_2] (\lambda z. f \ k \ z)) \\
\text{CPS}_{e}[(e_1, e_2)] & \equiv \\
& \lambda k. \text{CPS}_{e}[e_1] (\lambda z_1. \text{CPS}_{e}[e_2] (\lambda z_2. k (z_1, z_2))) \\
\text{CPS}_{e}[e.1] & \equiv \lambda k. \text{CPS}_{e}[e] (\lambda z. k (z.1)) \\
\text{CPS}_{e}[e.2] & \equiv \lambda k. \text{CPS}_{e}[e] (\lambda z. k (z.2))
\end{align*}
\]
Properties of the CPS Transformation

- Correctness: e is totally equivalent to $\text{CPS}[e] \equiv \text{CPS}_e[e]$ ($\lambda z. z$)
- If whole program has type τ_P and e has type τ, then $\text{CPS}_e[e]$ has type $(\tau \rightarrow \tau_P) \rightarrow \tau_P$
- Fixes evaluation order: $\text{CPS}_e[e]$ will evaluate e in left-to-right call-by-value
- Other similar transformations encode other evaluation orders
- Every intermediate computation is bound to / named by a variable (helpful for compiler writers)
- For all e, evaluation of $\text{CPS}_e[e]$ stays in this sublanguage:

 $e ::= v | vv | vv | v(v.1) | v(v.2)$

 $v ::= x | \lambda x. e | (v, v)$

- No need for a call-stack: every call is a tail-call
 - Now the program is maintaining the evaluation context via a closure that has the next “link” in its environment that has the next “link” in its environment, ...
Encoding First-class Continuations

With the CPS transformation, `letcc x. e` and `throw e e` can become $O(1)$ operations.

\[
\begin{align*}
\text{CPS}_{e} [\text{letcc } k. e] & \equiv \lambda k. \text{CPS}_{e}[e] \ k \\
\text{CPS}_{e} [\text{throw } e_1 e_2] & \equiv \\
& \quad \lambda k. \text{CPS}_{e}[e_1] (\lambda k'. \text{CPS}_{e}[e_2] (\lambda z. k' z))
\end{align*}
\]

- `letcc` gets passed the current continuation (just as it needs)
- `throw` ignores the current continuation (just as it should)

You can also manually program in this style (fully or partially)

- Has other uses as a programming idiom . . .
CPS as an Advanced Programming Idiom

- Because CPS uses only tail calls, it avoid deep call stacks when traversing recursive data structures
 - Recall the `iter` function from HW2
- A first-class continuation can “reify session state” in a client-server interaction
 - If the continuation is passed to the client, which returns it later, then the server can be stateless.
 - Suggests CPS for web programming
- Better: tools that do the CPS transformation
 - Gives you a “prompt-client” primitive without server-side state

“Thinking in terms of CPS” is a powerful technique.
Curry-Howard Isomorphism

Recall the typing rules for \texttt{letcc} and \texttt{throw}:

\[
\begin{align*}
\Gamma, x : \text{cont } \tau_a &\vdash e_b : \tau_a \\
\Gamma &\vdash \text{letcc } x.\ e_b : \tau_a \\
\Gamma &\vdash e_k : \text{cont } \tau_a \\
\Gamma &\vdash e_a : \tau_a \\
\Gamma &\vdash \text{throw } e\ e : \tau
\end{align*}
\]

- letcc: from a \text{cont } \tau_a assumption produce a \tau_a, produce \tau_a
- throw: from a \text{cont } \tau_a and a \tau_a, produce (any) \tau

But, STLC w/ \texttt{letcc} and \texttt{throw} (and w/o \texttt{fix}) is terminating.

- Not (necessarily) inconsistent.
Curry-Howard Isomorphism

Recall the typing rules for \texttt{letcc} and \texttt{throw}:

\[
\begin{align*}
\Gamma, x : \text{cont} \; \tau_a & \vdash e_b : \tau_a \\
\Gamma & \vdash \text{letcc} \; x. \; e_b : \tau_a
\end{align*}
\]

\[
\begin{align*}
\Gamma & \vdash e_k : \text{cont} \; \tau_a \\
\Gamma & \vdash e_a : \tau_a \\
\Gamma & \vdash \text{throw} \; e \; e : \tau
\end{align*}
\]

\[
\begin{align*}
\Gamma, \neg p & \vdash p \\
\Gamma & \vdash p
\end{align*}
\]

\[
\begin{align*}
\Gamma & \vdash \neg p \\
\Gamma & \vdash p \\
\Gamma & \vdash q
\end{align*}
\]

- \texttt{letcc} is a form of proof-by-contradiction
- \texttt{throw} is law of non-contradiction

CPS transformation corresponds to double-negation translation that maps classical proofs to intuitionistic proofs.