Programming Language Theory

Simply-Typed Lambda Calculus Extensions
Looking back, Looking forward

- Simply-Typed Lambda Calculus
 - syntax, small-step operational semantics, type system
 - proof of type soundness
- Today: Extend STLC (pairs, sums, recursion, ...)
- Further ahead: References, exceptions, polymorphism, ...
Simply-Typed Lambda Calculus (with constants)

\[e ::= c \mid x \mid \lambda x. \ e \mid e \ e \]

\[\tau ::= \text{int} \mid \tau \rightarrow \tau \]

\[v ::= c \mid \lambda x. \ e \]

\[\Gamma ::= \cdot \mid \Gamma, x : \tau \]

\[e \rightarrow_{cbv} e' \]

E-Apply

\[(\lambda x. \ e_b) \ v_a \rightarrow_{cbv} e_b[\nu_a/x] \]

E-AppF

\[e_f \rightarrow_{cbv} e'_f \]

\[e_f \ e_a \rightarrow_{cbv} e'_f \ e_a \]

E-AppA

\[e_a \rightarrow_{cbv} e'_a \]

\[v_f \ e_a \rightarrow_{cbv} v_f \ e'_a \]

\[\Gamma \vdash e : \tau \]

T-Const

\[\Gamma \vdash c : \text{int} \]

T-Var

\[\Gamma \vdash x : \tau \]

T-Lam

\[\Gamma, x : \tau_a \vdash e_b : \tau_r \]

\[\Gamma \vdash \lambda x. \ e_b : \tau_a \rightarrow \tau_r \]

T-App

\[\Gamma \vdash e_f : \tau_a \rightarrow \tau_r \]

\[\Gamma \vdash e_a : \tau_a \]

\[\Gamma \vdash e_f \ e_a : \tau_r \]
Type Soundness: Main Theorem and Lemmas

A program that type checks does not get stuck.

Theorem (Type Safety): If \(\Gamma \vdash e : \tau \) and \(e \rightarrow^*_{cbv} e' \), then either \(e' \) is a value or there exists \(e'' \) such that \(e' \rightarrow_{cbv} e'' \).

Follows from two key lemmas:

- Lemma (Progress): If \(\Gamma \vdash e' : \tau \), then either \(e' \) is a value or there exists an \(e'' \) such that \(e' \rightarrow_{cbv} e'' \).

- Lemma (Preservation): If \(\Gamma \vdash e : \tau \) and \(e \rightarrow_{cbv} e^\dagger \), then \(\Gamma \vdash e^\dagger : \tau \).

Proof of Type Safety given Progress and Preservation:

- By induction on (the derivation) \(e \rightarrow^*_{cbv} e' \).
 - \(e \rightarrow^*_{cbv} e' \equiv e \rightarrow^*_{cbv} e \): By Progress.
 - \(e \rightarrow^*_{cbv} e' \equiv e \rightarrow^*_{cbv} e^\dagger \rightarrow_{cbv} e' \): By Preservation and IH.
Type Soundness: Auxiliary Lemmas

Lemma (Canonical Forms): If $\cdot \vdash v : \tau$, then
1. if $\tau = \text{int}$, then $v = c$ (for some c)
2. if $\tau = \tau_1 \rightarrow \tau_2$, then $v = \lambda x. e$ (for some $\lambda x. e$)

Lemma (Substitution): If $\Gamma, x : \tau_x \vdash e_1 : \tau$ and $\Gamma \vdash e_2 : \tau_x$, then $\Gamma \vdash e_1[e_2/x] : \tau$.

Lemma (Exchange): If $\Gamma, x : \tau_x, y : \tau_y \vdash e : \tau$ and $x \neq y$, then $\Gamma, y : \tau_y, x : \tau_x \vdash e : \tau$.

Lemma (Weakening): If $\Gamma \vdash e : \tau$ and $x \notin \text{Dom}(\Gamma)$, then $\Gamma, x : \tau_x \vdash e : \tau$.
Type Safety Proof Hierarchy

Type Safety: Well-typed programs never get stuck.

- Progress: Well-typed programs are values or can take a step.

 By induction on $\cdot \vdash e : \tau$.

- Canonical Forms: “If it’s a duck, then it has feathers.”

 By inspection of typing rules.

- Preservation: Evaluation preserves the type.

 By induction on $\cdot \vdash e : \tau$, with cases on $e \rightarrow_{cbv} e'$.

- Substitution: Things stay well-typed after substitution.

 - Exchange: Reordering variables in context is ok.

 - Weakening: Adding unused variables to context is ok.
Extending the Simply-Typed Lambda Calculus

Use STLC as a foundation for understanding other common language constructs.

Add things via a *principled methodology*:

- **Extend Syntax:** e, v, τ, \ldots
 - derived forms (syntactic sugar)
- **Extend Operational Semantics:** $e \rightarrow_{\text{cbv}} e'$
 - direct semantics
- **Extend Type System:** $\Gamma \vdash e : \tau$
- **Extend Proofs:**
 - Progress, Canonical Forms, Preservation, Substitution

In fact, extensions that add new types have even more structure.
Let bindings (CBV)

\[
e ::= \cdots | \text{let } x = e_1 \text{ in } e_2
\]

\[
e_x \rightarrow_{\text{cbv}} e'_x
\]

\[
\text{let } x = e_x \text{ in } e_b \rightarrow_{\text{cbv}} \text{let } x = e'_x \text{ in } e_b
\]

\[
\text{let } x = v \text{ in } e_b \rightarrow_{\text{cbv}} e_b[v/x]
\]

\[
\Gamma \vdash e_x : \tau_x \quad \Gamma, x : \tau_x \vdash e_b : \tau
\]

\[
\Gamma \vdash \text{let } x = e_x \text{ in } e_b : \tau
\]

(Also need to extend definition of substitution...)

Progress: If \(e \) is a \texttt{let}, then one of the two rules above applies \(\text{(using induction)} \).

Preservation: Uses Substitution Lemma.

Derived forms

let seems very similar to λ, so make it a derived form:

▶ let x = ex in eb “desugars to / macro expands to” (λx. eb) ex

(Harder if λ needs an explicit type.)

Or define the operational semantics to replace let with λ:

\[
\text{let } x = ex \text{ in } eb \rightarrow_{cbv} (λx. eb) ex
\]

These 3 semantics are different in the sequence of machine states:

▶ e1 →cbv e2 →cbv · · · →cbv en

But (totally) equivalent and you could prove it (not hard).

Note: SML type-checks let and λ differently.
Note: Don’t desugar early if it hurts error messages!
Booleans and Conditionals

\[e ::= \cdots | \text{true} | \text{false} | \text{if } e \text{ then } e \text{ else } e \]

\[v ::= \cdots | \text{true} | \text{false} \]

\[\tau ::= \cdots | \text{bool} \]

\[
\frac{e_b \rightarrow_{\text{cbv}} e'_b}{\text{if } e_b \text{ then } e_t \text{ else } e_f \rightarrow_{\text{cbv}} \text{if } e'_b \text{ then } e_t \text{ else } e_f}
\]

\[
\frac{\text{if true then } e_t \text{ else } e_f \rightarrow_{\text{cbv}} e_t}{\text{if false then } e_t \text{ else } e_f \rightarrow_{\text{cbv}} e_f}
\]

\[\Gamma \vdash \text{true} : \text{bool} \]

\[\Gamma \vdash \text{false} : \text{bool} \]

\[
\frac{\Gamma \vdash e_b : \text{bool}}{\frac{\Gamma \vdash e_t : \tau \quad \Gamma \vdash e_f : \tau}{\Gamma \vdash \text{if } e_b \text{ then } e_t \text{ else } e_f : \tau}}
\]

Notes: new Canonical Forms case; all lemma cases easy
Pairs

\[
e ::= \cdots | (e, e) | e.1 | e.2
\]

\[
v ::= \cdots | (v, v)
\]

\[
\tau ::= \cdots | \tau \cdot \tau
\]

\[
\begin{align*}
e_1 & \rightarrow_{cbv} e'_1 \\
(e_1, e_2) & \rightarrow_{cbv} (e'_1, e_2)
\end{align*}
\]

\[
\begin{align*}
e_2 & \rightarrow_{cbv} e'_2 \\
(v_1, e_2) & \rightarrow_{cbv} (v_1, e'_2)
\end{align*}
\]

\[
\begin{align*}
e_p & \rightarrow_{cbv} e'_p \\
e_p.1 & \rightarrow_{cbv} e'_p.1
\end{align*}
\]

\[
\begin{align*}
e_p & \rightarrow_{cbv} e'_p \\
e_p.2 & \rightarrow_{cbv} e'_p.2
\end{align*}
\]

\[
\begin{align*}
(v_1, v_2).1 & \rightarrow_{cbv} v_1
\end{align*}
\]

\[
\begin{align*}
(v_1, v_2).2 & \rightarrow_{cbv} v_2
\end{align*}
\]

Small-step has 6 rules; large-step needs only 3 rules.
Will learn more concise notation later (evaluation contexts).
Pairs (continued)

\[\Gamma \vdash e_1 : \tau_1 \quad \Gamma \vdash e_2 : \tau_2 \quad \Gamma \vdash e_p : \tau_1 \ast \tau_2 \]
\[\Gamma \vdash (e_1, e_2) : \tau_1 \ast \tau_2 \]
\[\Gamma \vdash e_p.1 : \tau_1 \]
\[\Gamma \vdash e_p.2 : \tau_2 \]

Canonical Forms: If \(\cdot \vdash v : \tau_1 \ast \tau_2 \), then \(v = (v_1, v_2) \) (for some \(v_1 \) and \(v_2 \)).

Progress: New cases using C.F. are \(v.1 \) and \(v.2 \).

Preservation: For primitive reductions, use inversion.
Records

Records are like n-ary tuples with named fields:

\[
e ::= \cdots | \{l_1=e_1; \cdots ; l_n=e_n\} | e.l
\]

\[
v ::= \cdots | \{l_1=v_1; \cdots ; l_n=v_n\}
\]

\[
\tau ::= \cdots | \{l_1:\tau_1; \cdots ; l_n:\tau_n\}
\]

\[
\frac{e \rightarrow_{cbv} e'}{e.l \rightarrow_{cbv} e'.l}
\]

\[
\frac{\{l_1=v_1; \cdots ; l_n=v_n\}.l_i \rightarrow_{cbv} v_i}{\{l_1=v_1; \cdots ; l_n=v_n\}.l_i \rightarrow_{cbv} v_i}
\]

\[
\frac{e_i \rightarrow_{cbv} e'_i}{\{l_1=v_1; \cdots ; l_{i-1}=v_{i-1}; l_i=e_i; \cdots ; l_n=e_n\} \rightarrow_{cbv} \{l_1=v_1; \cdots ; l_{i-1}=v_{i-1}; l_i=e'_i; \cdots ; l_n=e_n\}}
\]

\[
\frac{\Gamma \vdash e : \{l_1:\tau_1; \cdots ; l_n:\tau_n\}}{\Gamma \vdash e.l_i : \tau_i}
\]

\[
\frac{\Gamma \vdash e_1 : \tau_1 \quad \cdots \quad \Gamma \vdash e_n : \tau_n}{\Gamma \vdash \{l_1=e_1; \cdots ; l_n=e_n\} : \{l_1:\tau_1; \cdots ; l_n:\tau_n\}}
\]

Fields in a record or record type should be distinct.
Fields do not α-convert.
Records (continued)

Should we be allowed to reorder fields?

- $\cdot \vdash \{ l_1 = 42; l_2 = \text{true}\} : \{ l_2 : \text{bool}; l_1 : \text{int}\}$

- (Really a question about “when are two types equal?”.)

Nothing wrong with this, but many languages disallow it.

- (Why? Run-time efficiency and/or type inference.)

More on records when we study *subtyping*.
Sums

What about ML-style datatypes:

\[
\text{datatype } t = A \mid B \text{ of int } \mid C \text{ of int } \times t
\]

Combine many features in one:
1. Tagged variants (i.e., discriminated unions)
2. Recursive types
3. Type constructors (e.g., \texttt{datatype 'a mylist = \ldots})
4. Named types

For now, just model (1) with (anonymous) sum types.

- (2) in a later lecture
- (3) has an easy way (macros) and a hard way (higher-order polymorphism)
- (4) to be discussed informally
Sums syntax and overview

\[
\begin{align*}
e & ::= \cdots | L(e) | R(e) | \text{case } e \text{ of } L(x) \Rightarrow e | R(x) \Rightarrow e \\
v & ::= \cdots | L(v) | R(v) \\
\tau & ::= \cdots | \tau_1 + \tau_2
\end{align*}
\]

- Only two constructors: \(L \) and \(R \)
- All values of any sum type built from these constructors
- So \(L(e) \) can have any sum type allowed by \(e \)'s type
- No need to declare sum types in advance
- Like functions, will “guess the type” in our rules
Sums operational semantics

\[
\text{case } L(v) \text{ of } L(x) => e_1 \mid R(y) => e_2 \rightarrow_{\text{cbv}} e_1[v/x]
\]

\[
\text{case } R(v) \text{ of } L(x) => e_1 \mid R(y) => e_2 \rightarrow_{\text{cbv}} e_2[v/y]
\]

\[
e_s \rightarrow_{\text{cbv}} e'_s
\]

\[
\text{case } e_s \text{ of } L(x) => e_1 \mid R(y) => e_2
\]
\[
\rightarrow_{\text{cbv}} \text{ case } e'_s \text{ of } L(x) => e_1 \mid R(y) => e_2
\]

\[
e \rightarrow_{\text{cbv}} e'
\]

\[
L(e) \rightarrow_{\text{cbv}} L(e')
\]

\[
e \rightarrow_{\text{cbv}} e'
\]

\[
R(e) \rightarrow_{\text{cbv}} R(e')
\]

Note: case has binding occurrences, just like pattern-matching.

(Definition of substitution must avoid capture, just like functions.)
Sums operational semantics

Feel free to think about *tagged values* in your head:

- A tagged value is a pair of
 - a tag (L or R (or 0 or 1, if you prefer))
 - the (underlying) value

- A match
 - checks the tag
 - binds the variable to the value

This much is just like SML.
Sums type system

\[
\Gamma \vdash e : \tau_1 \\
\frac{}{\Gamma \vdash L(e) : \tau_1 + \tau_2}
\]

\[
\Gamma \vdash e : \tau_2 \\
\frac{}{\Gamma \vdash R(e) : \tau_1 + \tau_2}
\]

\[
\Gamma \vdash e : \tau_1 + \tau_2 \\
\frac{}{\Gamma, x : \tau_1 \vdash e_1 : \tau} \\
\frac{}{\Gamma, y : \tau_2 \vdash e_2 : \tau}
\]

\[
\frac{}{\Gamma \vdash \text{case } e \text{ of } L(x) => e_1 \mid R(y) => e_2 : \tau}
\]

Key ideas:
- For constructors, “other side can be anything”
 - Like functions, “guess” the other type
 - Not trivial to infer; can require annotations
- For match, both sides need same type
 - don’t know which branch will be taken, just like an if.

Can encode booleans with sums:
- \texttt{bool} = \texttt{int + int}, \texttt{true} = L(0), \texttt{false} = R(0).
Sums type safety

Canonical Forms:
If \(_ \vdash v : \tau_1 + \tau_2 \), then either \(v = L(v') \) (for some \(v' \)) or \(v = R(v') \) (for some \(v' \)).

- Progress for case \(e \) of \(L(x) \Rightarrow e_1 \mid R(y) \Rightarrow e_2 \) follows, as usual, from Canonical Forms.

- Preservation for case \(e \) of \(L(x) \Rightarrow e_1 \mid R(y) \Rightarrow e_2 \) follows from the type of the underlying value and from Substitution.

- Substitution has new “hard” cases. because case \(e \) of \(L(x) \Rightarrow e_1 \mid R(y) \Rightarrow e_2 \) has new binding occurrences.

- That’s all (plus lots of induction).
What are sums for?

- Pairs, structs, records, aggregates are fundamental data-builders
- Sums are just as fundamental: “this or that (and not both)”
- We have seen how SML does sums (datatype)
- Worth showing how C and Java do the same thing
 - A primitive in one language is an idiom in another
Sums in C

datatype t = A of t1 | B of t2 | C of t3
 case e of A x => ...

One way in C:

struct t {
 enum {A, B, C} tag;
 union {t1 a; t2 b; t3 c;} data;
};
... switch(e->tag) { case A: t1 x=e->data.a; ...

- No static checking that tag is obeyed
- As fat as the fattest variant (avoidable with casts)
 - Mutation costs us again!
Sums in Java

datatype t = A of t1 | B of t2 | C of t3

One way in Java (t4 is the match-expression's type):

abstract class t {abstract t4 m();}
class A extends t { t1 x; t4 m(){...}}
class B extends t { t2 x; t4 m(){...}}
class C extends t { t3 x; t4 m(){...}}
... e.m() ...

▶ A new method for each match expression
▶ Supports extensibility via new variants (subclasses)
 instead of extensibility via new operations (match expressions)
Pairs vs. Sums

You need both in your language

- With only pairs, you clumsily use dummy values, waste space, and rely on unchecked tagging conventions
- Example: replace `int + (int → int)` with `int * (int * (int → int))`

Pairs and sums are “logical duals” (as the typing rules show and we’ll soon see).

- To make a \(\tau_1 \times \tau_2 \), need a \(\tau_1 \) and a \(\tau_2 \).
- To make a \(\tau_1 + \tau_2 \), need a \(\tau_1 \) or a \(\tau_2 \).
- Given a \(\tau_1 \times \tau_2 \), can get a \(\tau_1 \) or a \(\tau_2 \) (your “choice”).
- Given a \(\tau_1 + \tau_2 \), be prepared for either a \(\tau_1 \) or \(\tau_2 \) (the value’s “choice”).
Base Types and Primitives, in general

What about floats, strings, ...?
Could add them all or do something more general...

Parameterize our language/semantics by a collection of

- *base types* \((b_1, \cdots, b_n) \) and
- *primitives* \((p_1 : \tau_1, \cdots, p_n : \tau_n) \)

Examples:

- \text{concat} : \text{string} \to \text{string} \to \text{string}
- \text{floatToInt} : \text{float} \to \text{int}
- "hello" : \text{string}
Base Types and Primitives, in general

For each primitive, assume that if it is applied to values of the right types, then it produces a value of the right type.

▶ Not always a valid assumption: division? file I/O?

Together the types and assumed steps tell us how to type-check and evaluate $p_i \ v_1 \cdots \ v_n$ where p_i is a primitive.

We can prove soundness once and for all given the assumptions.
Recursion

We won’t prove it, but every extension so far preserves termination.

A Turing-complete language needs some sort of recursion. But, our Lambda-Calculus encoding of recursion won’t type-check.

▷ Instead, add an explicit construct for recursion.
▷ Might consider `fun f x = e;`
 Instead, introduce something more concise and general but less intuitive.
Recursion

We won’t prove it, but every extension so far preserves termination.

A Turing-complete language needs some sort of recursion. But, our Lambda-Calculus encoding of recursion won’t type-check.

▶ Instead, add an explicit construct for recursion.

▶ Might consider `fun f x = e;`
 Instead, introduce something more concise and general but less intuitive.

\[
e ::= \cdots \mid \text{fix } e
\]

\[
\begin{align*}
e \rightarrow_{\text{cbv}} e' \\
\text{fix } e \rightarrow_{\text{cbv}} \text{fix } e' \\
\text{fix } (\lambda x. e) \rightarrow_{\text{cbv}} e[\text{fix } (\lambda x. e)/x]
\end{align*}
\]

Note: No new values and no new types.
Using \texttt{fix}

It works just like \texttt{fun}, e.g.,

\[
\texttt{fix (}\lambda f. \lambda n. \text{if } n < 1 \text{ then } 1 \text{ else } n * (f (n - 1)))
\]

Note: Use \texttt{fix} and tuples to encode mutual recursion.
Why called \textbf{fix}?

In math, the fix-point of a function g is an x such that $g(x) = x$.

- This makes sense only if g has type $\tau \rightarrow \tau$ for some τ.
- A particular g could have have 0, 1, 42, or infinity fix-points.
- Examples for functions of type \textbf{int \rightarrow int}:
 - $\lambda x. x + 1$ has no fix-points
 - $\lambda x. x \times 0$ has one fix-point
 - $\lambda x. \text{abs_val}(x)$ has an infinite number of fix-points
 - $\lambda x. \text{if } x < 10 \&\& x > 0 \text{ then } x \text{ else } 0$ has 10 fix-points
Higher types

At higher types like \((\text{int} \to \text{int}) \to (\text{int} \to \text{int})\), the notion of fix-point is exactly the same (but harder to think about).

For what inputs \(f\) of type \(\text{int} \to \text{int}\) is \(g(f) = f\).

Examples:

- \(\lambda f. \lambda x. (f \, x) + 1\) has no fix-points
- \(\lambda f. \lambda x. (f \, x) \times 0\) (or just \(\lambda f. \lambda x. 0\)) has 1 fix-point
 - The function that always returns 0
 - In math, there is exactly one such function (cf. equivalence)
- \(\lambda f. \lambda x. \text{abs}_\text{val}(f \, x)\) has an infinite number of fix-points
 - Any function that never returns a negative result
Back to factorial

So, what are the fix-points of

$$\lambda f. \lambda x. \text{if } x < 1 \text{ then } 1 \text{ else } x \times (f(x - 1))$$

It turns out there is exactly one (in math): the factorial function!

And $\text{fix } (\lambda f. \lambda x. \text{if } x < 1 \text{ then } 1 \text{ else } x \times (f(x - 1)))$ behaves just like the factorial function.

- i.e., it behaves just like the fix-point of
 $$\lambda f. \lambda x. \text{if } x < 1 \text{ then } 1 \text{ else } x \times (f(x - 1)).$$

(This isn’t really important, but good to explain terminology and show that programming is deeply connected to mathematics.)
Recursion type system and type soundness

Recall: fix-point only makes sense for functions of type $\tau \to \tau$ (for some τ).

\[
\Gamma \vdash e : \tau \to \tau \\
\Gamma \vdash \text{fix } e : \tau
\]

Math explanation: If e is a function from τ to τ, then $\text{fix } e$, the fixed-point of e, is some τ with the fixed-point property. So, it’s something with type τ.

Operational explanation: $\text{fix } (\lambda x. \ e')$ becomes $e'[\text{fix } (\lambda x. \ e')/x]$. The substitution means x and $\text{fix } (\lambda x. \ e')$ better have the same type. And the result means e' and $\text{fix } (\lambda x. \ e')$ better have the same type.

Note: The τ in the typing rule is usually insantiated with a function type:

- e.g., $\tau_1 \to \tau_2$, so e has type $(\tau_1 \to \tau_2) \to (\tau_1 \to \tau_2)$.

Note: Proving soundness is straightforward!
Recursion redux

Because \texttt{fix} most useful for defining functions:

\[
e ::= \cdots | \text{rec } f \; x. \; e
\]

\[
\text{rec } f \; x. \; e \rightarrow_{\text{cbv}} \lambda x. \; e[\text{rec } f \; x. \; e/f]
\]

\[
\Gamma, f : \tau_a \rightarrow \tau_r, x : \tau \vdash e : \tau_r
\]

\[
\Gamma \vdash \text{rec } f \; x. \; e : \tau_a \rightarrow \tau_r
\]

Equivalently, make it a derived form:

\[
\text{rec } f \; x. \; e \text{ “desugars to / macro expands to” } \text{fix} (\lambda f. \; \lambda x. \; e)
\]
Lists

\[e ::= \cdots \mid \text{nil} \mid e :: e \mid \text{nil? } e \mid \text{hd } e \mid \text{tl } e \]

\[\nu ::= \cdots \mid \text{nil} \mid \nu :: \nu \]

\[\tau ::= \cdots \mid \text{list } \tau \]

\[
\frac{e_h \rightarrow_{\text{cbv}} e'_h}{e_h :: e_t \rightarrow_{\text{cbv}} e'_h :: e_t}
\]

\[
\frac{e_t \rightarrow_{\text{cbv}} e'_t}{v_h :: e_t \rightarrow_{\text{cbv}} v_h :: e'_t}
\]

\[
\frac{e_l \rightarrow_{\text{cbv}} e'_l}{\text{nil? } e_l \rightarrow_{\text{cbv}} \text{nil? } e'_l}
\]

\[
\frac{\text{nil? } e_l \rightarrow_{\text{cbv}} \text{true}}{\text{nil? } \nu \rightarrow_{\text{cbv}} \text{false}}
\]

\[
\frac{e_l \rightarrow_{\text{cbv}} e'_l}{\text{hd } e_l \rightarrow_{\text{cbv}} \text{hd } e'_l}
\]

\[
\frac{e_l \rightarrow_{\text{cbv}} e'_l}{\text{tl } e_l \rightarrow_{\text{cbv}} \text{tl } e'_l}
\]

\[
\frac{\text{hd } (\nu :: \nu_t) \rightarrow_{\text{cbv}} \nu_h}{\text{tl } (\nu :: \nu_t) \rightarrow_{\text{cbv}} \nu_t}
\]
Lists (continued)

\[
\frac{}{\Gamma \vdash \text{nil} : \text{list } \tau}
\]

\[
\frac{\Gamma \vdash e_h : \tau \quad \Gamma \vdash e_t : \text{list } \tau}{\Gamma \vdash e_h :: e_t : \text{list } \tau}
\]

\[
\frac{\Gamma \vdash e_l : \text{list } \tau}{\Gamma \vdash \text{nil? } e_l : \text{bool}}
\]

\[
\frac{\Gamma \vdash e_l : \text{list } \tau}{\Gamma \vdash \text{hd } e_l : \tau}
\]

\[
\frac{\Gamma \vdash e_l : \text{list } \tau}{\Gamma \vdash \text{tl } e_l : \text{list } \tau}
\]

Progress and Preservation: Straightforward
Lists (continued)

\[
\begin{align*}
\Gamma & \vdash \text{nil} : \text{list } \tau \\
\Gamma & \vdash \text{elt} : \text{list } \tau \\
\Gamma & \vdash \text{nil? elt} : \text{bool} \\
\Gamma & \vdash \text{hd elt} : \tau \\
\Gamma & \vdash \text{tl elt} : \text{list } \tau
\end{align*}
\]

\[
\begin{align*}
\Gamma & \vdash e_h : \tau \\
\Gamma & \vdash e_t : \text{list } \tau
\end{align*}
\]

\[
\Gamma & \vdash e_h :: e_t : \text{list } \tau
\]

Progress and Preservation: Straightforward

Oops: \(\text{hd \ nil}\) is well-typed, but stuck!
Lists (corrected)

\[e ::= \cdots | \text{nil} | e :: e | \text{unlist } e \]

\[v ::= \cdots | \text{nil} | v :: v \]

\[\tau ::= \cdots | \text{list } \tau \]

\[
\frac{e_h \rightarrow_{\text{cbv}} e'_h}{e_h :: e_t \rightarrow_{\text{cbv}} e'_h :: e_t}
\]

\[
\frac{e_t \rightarrow_{\text{cbv}} e'_t}{v_h :: e_t \rightarrow_{\text{cbv}} v_h :: e'_t}
\]

\[
\frac{e_l \rightarrow_{\text{cbv}} e'_l}{\text{unlist } e_l \rightarrow_{\text{cbv}} \text{unlist } e'_l}
\]

\[
\text{unlist nil} \rightarrow_{\text{cbv}} \text{L}(0)
\]

\[
\text{unlist } (v_h :: v_t) \rightarrow_{\text{cbv}} \text{R}(v_h, v_t)
\]

\[
\frac{\Gamma \vdash e_h : \tau}{\Gamma \vdash \text{nil} :: e_t : \text{list } \tau}
\]

\[
\frac{\Gamma \vdash e_h :: e_t : \text{list } \tau}{\Gamma \vdash e_l : \text{list } \tau}
\]

\[
\frac{\Gamma \vdash \text{unlist } e_l : \text{int} + (\tau \ast \text{list } \tau)}{\Gamma \vdash \text{unlist } e_l : \text{int} + (\tau \ast \text{list } \tau)}
\]

Progress and Preservation: Straightforward
Extensions: the general approach

We added `let`, booleans, pairs, records, sums, `fix`, lists.

- *let* was syntactic sugar.
- *fix* “baked in self-application” (and made lang. Turing-complete).
- The others *added types*.

Whenever we add a new form of type τ there are:

- Introduction forms (ways to make values of type τ)
- Elimination forms (ways to use values of type τ)

What are these forms for functions? for pairs? for sums? for lists?

When you add a new type, think “what are the intro and elim forms”?
Anonymity

We added many forms of types, all *unnamed* (a.k.a. *structural*).

Many real PLs have (all or mostly) *named* types:

- C, C++, Java: all record types (or similar) have names
 - (omitting them just means compiler makes up a name)
- SML sum-types have names.
 - SML record-types are unnamed.

A never-ending debate:

- Structural types allow more code reuse: good.
- Named types allow less code reuse: good.
- Structural types allow generic type-based code: good.
- Named types allow type-based code to distinguish names: good.

The theory is often easier and simpler with structural types.
Termination

Surprising fact: If $\vdash e : \tau$ in the STLC with all additions except fix, then there exists a v such that $e \rightarrow^* v$.

That is, all programs terminate.

Termination is trivially decidable (the constant “yes” function), and language is not Turing-complete.

Proof is in the book. Requires cleverness, because the size of expressions does not “go down” as programs run.

Non-proof:
Recursion in Lambda Calculus requires some sort of self-application.
Easy fact:
For all Γ, x, and τ, we cannot derive $\Gamma \vdash x \ x : \tau$.