Programming Language Theory

CSCI-740
Term 20191
Handout 2
October 11, 2019

Type Safety of STLC (with constants)

Syntax

\[
\begin{align*}
 e &::= c \mid x \mid \lambda x. e \mid e \ e \\
v &::= c \mid \lambda x. e
\end{align*}
\]

Work with terms “up to renaming of bound variables” (“up to alpha-conversion”).

Substitution

\[
\begin{align*}
 FV(c) &= \{\}\ \\
 FV(x) &= \{x\} \\
 FV(e_\ f \ e_\ a) &= FV(e_\ f) \cup FV(e_\ a) \\
 FV(\lambda x. \ e_\ b) &= FV(e_\ b) \setminus \{x\}
\end{align*}
\]

\[
e_1[e_2/z] = e_3
\]

\[
\begin{array}{c}
\frac{e[z/x]}{e[z/x] = e} & \quad \frac{x = z}{x[z/x] = e} & \quad \frac{x \neq z}{x[z/x] = x} \\
\hline
\frac{e_\ b[z/x] = e_\ b'}{e_\ b[z/x] = \lambda x. e_\ b'} & \quad \frac{x \neq z \land x \notin FV(e)}{x[z/x] = e_\ b'} & \quad \frac{e_\ f[z/x] = e_\ f'}{e_\ a[z/x] = e_\ a'}
\end{array}
\]

Substitution usually treated as a metafunction, not a judgement.

Operational Semantics

Small-step, left-to-right, call-by-value (CBV) operational semantics:

\[
\begin{array}{c}
\frac{e \rightarrow_{cbv} e'}{e \rightarrow e'} \\
\hline
E\text{-Apply} & E\text{-AppF} & E\text{-AppA}
\end{array}
\]

\[
\begin{align*}
 (\lambda x. e_\ b) v_\ a &\rightarrow_{cbv} e_\ b[v_\ a/x] \\
 e_\ f e_\ a &\rightarrow_{cbv} e_\ f' e_\ a \\
 e_\ a &\rightarrow_{cbv} e_\ a'
\end{align*}
\]

We say that an expression \(e \) is stuck if \(e \) is not a value, and there is no \(e' \) such that \(e \rightarrow_{cbv} e' \)

We say that an expression \(e \) gets stuck if \(e \rightarrow_{cbv}^* e' \), and \(e' \) is stuck.
Type System

Type system to classify (accept or reject) λ-terms.

\[\tau ::= \text{int} \mid \tau \rightarrow \tau \]
\[\Gamma ::= \cdot \mid \Gamma, x : \tau \]

C-Hit
\[\Gamma, x : \tau_x @ x \leadsto \tau_x \]

C-Miss
\[x \neq y \quad \Gamma' @ x \leadsto \tau \]
\[\Gamma', y : \tau_y @ x \leadsto \tau \]

Γ ⊢ e : τ

T-Const
\[\Gamma \vdash c : \text{int} \]

T-Var
\[\Gamma @ \vdash x : \tau \]
\[\Gamma \vdash x : \tau \]

T-Lam
\[\Gamma, x : \tau_a \vdash e_b : \tau_r \]
\[\Gamma \vdash \lambda x. e_b : \tau_a \rightarrow \tau_r \]

T-App
\[\Gamma \vdash e_f : \tau_a \rightarrow \tau_r \quad \Gamma \vdash e_a : \tau_a \]
\[\Gamma \vdash e_f e_a : \tau_r \]

Type Safety Theorems/Lemmas

Theorem (Type Safety):
If \(\cdot \vdash e : \tau \) and \(e \rightarrow^*_{\text{cbv}} e' \),
then either \(e' \) is a value or there exists \(e'' \) such that \(e' \rightarrow_{\text{cbv}} e'' \).

- **Lemma (Progress):**
 If \(\cdot \vdash e' : \tau \), then either \(e' \) is a value or there exists an \(e'' \) such that \(e \rightarrow_{\text{cbv}} e'' \).

 - **Lemma (Canonical Forms; int):**
 If \(\cdot \vdash v : \text{int} \), then \(v = c \) (for some \(c \)).

 - **Lemma (Canonical Forms; \(\tau_a \rightarrow \tau_r \)):**
 If \(\cdot \vdash v : \tau_a \rightarrow \tau_r \), then \(v = \lambda x. e_b \) (for some \(\lambda x. e_b \)).

- **Lemma (Preservation):**
 If \(\cdot \vdash e : \tau \) and \(e \rightarrow_{\text{cbv}} e' \), then \(\cdot \vdash e' : \tau \).

- **Lemma (Substitution):**
 If \(\Gamma, z : \tau_z \vdash e_1 : \tau \) and \(\Gamma \vdash e_2 : \tau_z \), then \(\Gamma \vdash e_1[e_2/z] : \tau \).

 * **Lemma (Exchange):**
 If \(\Gamma, x : \tau_x, y : \tau_y \vdash e : \tau \) and \(x \neq y \), then \(\Gamma, y : \tau_y, x : \tau_x \vdash e : \tau \).

 * **Lemma (Weakening):**
 If \(\Gamma \vdash e : \tau \) and \(x \notin \text{Dom}(\Gamma) \), then \(\Gamma, x : \tau_x \vdash e : \tau \).
Type Safety Proof

A program that type checks does not get stuck.

Theorem (Type Safety):
If \(\cdot \vdash e : \tau \) and \(e \rightarrow^*_{cbv} e' \),
then either \(e' \) is a value or there exists \(e'' \) such that \(e' \rightarrow_{cbv} e'' \).

Comments: The Type Safety Theorem follows as a simple corollary to the Progress and Preservation Lemmas stated and proven below.

Proof (assuming Preservation and Progress):
By structural induction on (the derivation of) \(e \rightarrow^*_{cbv} e' \).

- \(e \rightarrow^*_{cbv} e' \equiv e \rightarrow^*_{cbv} e \) :
 Therefore, \(e' = e \).
 We must show that either \(e' \) is a value or there exists \(e'' \) such that \(e' \rightarrow^*_{cbv} e'' \).
 From \(\cdot \vdash e : \tau \) and \(e = e' \), we have \(\cdot \vdash e' : \tau \).
 By Progress applied to \(\cdot \vdash e' : \tau \), we have either \(e' \) is a value or there exists \(e'' \) such that \(e' \rightarrow_{cbv} e'' \).

- \(e \rightarrow^*_{cbv} e' \equiv e \rightarrow^*_{cbv} e' \) :
 Therefore, we have \(e \rightarrow_{cbv} e' \) and \(e' \rightarrow^*_{cbv} e'' \).
 We must show that either \(e' \) is a value or there exists \(e'' \) such that \(e' \rightarrow^*_{cbv} e'' \).
 By Preservation applied to \(\cdot \vdash e : \tau \) and \(e \rightarrow^*_{cbv} e' \), we have \(\cdot \vdash e' : \tau \).
 By the induction hypothesis applied to \(e' \rightarrow^*_{cbv} e' \) with \(\cdot \vdash e' : \tau \),
 we have either \(e' \) is a value or there exists \(e'' \) such that \(e' \rightarrow_{cbv} e'' \).
Lemma (Progress): If \(\cdot \vdash e : \tau \), then either \(e \) is a value or there exists an \(e' \) such that \(e \rightarrow_{cbv} e' \).

Proof (assuming Canonical Forms):

By induction on (the derivation of) \(\cdot \vdash e : \tau \):

- **T-Const** concludes the derivation of \(\cdot \vdash e : \tau \):

 Therefore, \(e = c \) and \(\tau = \text{int} \).

 We must show that either \(e \) is a value or there exists an \(e' \) such that \(e \rightarrow_{cbv} e' \).

 We have \(e = c \) is a value.

- **T-Var** concludes the derivation of \(\cdot \vdash e : \tau \):

 Therefore, \(\cdot \vdash x : \tau_0 \vdash e_0 : \tau_r \), \(e = \lambda x. e_0 \), and \(\tau = \tau_0 \rightarrow \tau_r \).

 We must show that either \(e \) is a value or there exists an \(e' \) such that \(e \rightarrow_{cbv} e' \).

 We have \(e = \lambda x. e_0 \) is a value.

- **T-Lam** concludes the derivation of \(\cdot \vdash e : \tau \):

 Therefore, \(\cdot \vdash \lambda x. e : \tau_0 \rightarrow \tau_r \), \(\cdot \vdash e : \tau_0 \vdash e : \tau_r \), and \(\tau = \tau_0 \rightarrow \tau_r \).

 We must show that either \(e \) is a value or there exists an \(e' \) such that \(e \rightarrow_{cbv} e' \).

 By the induction hypothesis applied to \(\cdot \vdash e : \tau_0 \rightarrow \tau_r \), we have either

 - \(e \) is a value:

 Therefore, \(e \) = \(v_f \).

 By the induction hypothesis applied to \(\cdot \vdash e_0 : \tau_0 \), we have either

 * \(e_0 \) is a value:

 Therefore, \(e_0 = v_a \).

 From \(\cdot \vdash e_f : \tau_a \rightarrow \tau_r \), \(e_f = v_f \), we have \(\cdot \vdash v_f : \tau_a \rightarrow \tau_r \).

 By *Canonical Forms* applied to \(\cdot \vdash v_f : \tau_a \rightarrow \tau_r \), we have \(v_f = \lambda x. e_b \).

 From E-Apply, we can construct the derivation \((\lambda x. e_b) v_a \rightarrow_{cbv} e_b[v_a/x] \); therefore, we have \((\lambda x. e_b) v_a \rightarrow_{cbv} e_b[v_a/x] \).

 Take \(e' = e_b[v_a/x] \).

 From \((\lambda x. e_b) v_a \rightarrow_{cbv} e_b[v_a/x] \), \(e = e_f e_a \), \(e_f = v_f \), \(e_a = v_a \), \(v_f = \lambda x. e_b \), and \(e' = e_b[v_a/x] \), we have \(e \rightarrow_{cbv} e' \).

 * there exists an \(e'_a \) such that \(e \rightarrow_{cbv} e'_a \):

 From E-Apply and \(e_a \rightarrow_{cbv} e'_a \), we can construct the derivation \(e_a \rightarrow_{cbv} e'_a \); therefore, we have \(v_f e_a \rightarrow_{cbv} v_f e'_a \).

 Take \(e' = v_f e'_a \).

 From \(v_f e_a \rightarrow_{cbv} v_f e'_a \), \(e = e_f e_a \), \(v_f = e_f \), and \(e' = v_f e'_a \), we have \(e \rightarrow_{cbv} e' \).

 - there exists an \(e'_f \) such that \(e \rightarrow_{cbv} e'_f \):

 From E-Apply and \(e_f \rightarrow_{cbv} e'_f \), we can construct the derivation \(e_f \rightarrow_{cbv} e'_f \); therefore, we have \(e_f e_a \rightarrow_{cbv} e'_f e_a \).

 Take \(e' = e'_f e_a \).

 From \(e_f e_a \rightarrow_{cbv} e'_f e_a \), \(e = e_f e_a \), and \(e' = e'_f e_a \), we have \(e \rightarrow_{cbv} e' \).
Lemma (Canonical Forms): If $\cdot \vdash v : \tau$, then

1. if $\tau = \text{int}$, then $v = c$ (for some c)
2. if $\tau = \tau_a \to \tau_r$, then $v = \lambda x. e_b$ (for some $\lambda x. e_b$)

Proof:
(By inspection of the typing rules.)

1. $\tau = \text{int}$:
 By assumption, $\cdot \vdash v : \text{int}$.
 Only T-CONST can derive $\cdot \vdash v : \text{int}$; therefore, $v = c$ (for some c).

2. $\tau = \tau_a \to \tau_r$:
 By assumption, $\cdot \vdash v : \tau_a \to \tau_r$.
 Only T-LAM can derive $\cdot \vdash v : \tau_a \to \tau_r$; therefore, $v = \lambda x. e_b$ (for some $\lambda x. e_b$).
Lemma (Preservation): If \(\vdash e : \tau \) and \(e \rightarrow_{\text{cbv}} e' \), then \(\vdash e' : \tau \).

Proof (assuming Substitution):

By induction on (the derivation of) \(\vdash e : \tau \):

- **T-Const** concludes the derivation of \(\vdash e : \tau \):
 Therefore, \(e = c \) and \(\tau = \text{int} \).
 From \(e \rightarrow_{\text{cbv}} e' \) and \(e = c \), we have \(c \rightarrow_{\text{cbv}} e' \).
 But \(c \rightarrow_{\text{cbv}} e' \) is contradictory; there is no derivation of such a judgement.
 Therefore, vacuously, \(\vdash e' : \tau \).

- **T-VAR** concludes the derivation of \(\vdash e : \tau \):
 Therefore, \(e = x \) and \(\overline{\emptyset} x \sim \tau \).
 From \(e \rightarrow_{\text{cbv}} e' \) and \(e = x \), we have \(x \rightarrow_{\text{cbv}} e' \).
 But \(x \rightarrow_{\text{cbv}} e' \) is contradictory; there is no derivation of such a judgement.
 Therefore, vacuously, \(\vdash e' : \tau \).

- **T-LAM** concludes the derivation of \(\vdash e : \tau \):
 Therefore, \(\lambda x. e \rightarrow_{\text{cbv}} e' \) and \(e = \lambda x. e_b \), and \(\tau = \tau_a \rightarrow \tau_r \).
 From \(e \rightarrow_{\text{cbv}} e' \) and \(e = \lambda x. e_b \), we have \(\lambda x. e_b \rightarrow_{\text{cbv}} e' \).
 But \(\lambda x. e_b \rightarrow_{\text{cbv}} e' \) is contradictory; there is no derivation of such a judgement.
 Therefore, vacuously, \(\vdash e' : \tau \).

- **T-APP** concludes the derivation of \(\vdash e : \tau \):
 Therefore, \(\vdash e_f : \tau_a \rightarrow \tau_r \), \(\vdash e_a : \tau_a \), \(e = e_f e_a \), and \(\tau = \tau_r \).
 From \(e \rightarrow_{\text{cbv}} e' \) and \(e = e_f e_a \), we have \(e_f e_a \rightarrow_{\text{cbv}} e' \).
 By cases on (the derivation of) \(e_f e_a \rightarrow_{\text{cbv}} e' \):
 - **E-APPLY** concludes the derivation of \(e_f e_a \rightarrow_{\text{cbv}} e' \):
 Therefore, \(e_f = \lambda x. e_b \), \(e_a = v_a \), and \(e' = e_b[v_a/x] \).
 From \(e' = e_b[v_a/x] \) and \(e_a = v_a \), we have \(e' = e_b[v_a/x] \).
 From \(\vdash e_f : \tau_a \rightarrow \tau_r \) and \(e_f = \lambda x. e_b \), we have \(\vdash \lambda x. e_b : \tau_a \rightarrow \tau_r \).
 By inversion of \(\vdash \lambda x. e_b : \tau_a \rightarrow \tau_r \), we have \(\vdash x : \tau_a \vdash e_b : \tau_r \).
 By **Substitution** applied to \(x : \tau_a \vdash e_b : \tau_r \) and \(\vdash e_a : \tau_a \), we have \(\vdash e_b[e_a/x] : \tau_r \).
 From \(\vdash e_b[e_a/x] : \tau_r \), \(e' = e_b[e_a/x] \), and \(\tau = \tau_r \), we have \(\vdash e' : \tau \).
 - **E-APPF** concludes the derivation of \(e_f e_a \rightarrow_{\text{cbv}} e' \):
 Therefore, \(e_f \rightarrow_{\text{cbv}} e'_f \) and \(e' = e'_f e_a \).
 By the induction hypothesis applied to \(\vdash e_f : \tau_a \rightarrow \tau_r \) and \(e_f \rightarrow_{\text{cbv}} e'_f \), we have \(\vdash e'_f : \tau_a \rightarrow \tau_r \).
 From **T-APP**, \(\vdash e'_f : \tau_a \rightarrow \tau_r \), and \(\vdash e_a : \tau_a \),
 we can construct the derivation \(\vdash e'_f : \tau_a \rightarrow \tau_r \).
 therefore, we have \(\vdash e'_f e_a : \tau_r \).
 From \(\vdash e'_f e_a : \tau_r \), \(e' = e'_f e_a \), and \(\tau = \tau_r \), we have \(\vdash e' : \tau_r \).
 - **E-APPFA** concludes the derivation of \(e_f e_a \rightarrow_{\text{cbv}} e' \):
 Therefore, \(e_a \rightarrow_{\text{cbv}} e'_a \) and \(e_f = v_f \), and \(e' = v_f e'_a \).
 From \(e' = v_f e'_a \) and \(e_f = v_f \), we have \(e' = e_f e'_a \).
 By the induction hypothesis applied to \(e_a \rightarrow_{\text{cbv}} e'_a \) and \(\vdash e_a : \tau_a \), we have \(\vdash e'_a : \tau_a \).
 From **T-APP**, \(\vdash e_f : \tau_a \rightarrow \tau_r \), and \(\vdash e'_a : \tau_a \),
 we can construct the derivation \(\vdash e_f : \tau_a \rightarrow \tau_r \).
 therefore, we have \(\vdash e_f e'_a : \tau_r \).
 From \(\vdash e_f e'_a : \tau_r \), \(e' = e_f e'_a \), and \(\tau = \tau_r \), we have \(\vdash e' : \tau_r \).
Lemma (Substitution): If $\Gamma, z : \tau_z \vdash e_1 : \tau$ and $\Gamma \vdash e_2 : \tau_z$, then $\Gamma \vdash e_1[e_2/z] : \tau$.

Comments: The proof of the Preservation Lemma only requires a Substitution Lemma where $\Gamma = \cdot$. However, proving the Substitution Lemma itself requires the stronger induction hypothesis.

Proof (assuming Exchange and Weakening):
By structural induction on e_1.

- $e_1 \equiv c$:
 By assumption, we have $\Gamma, z : \tau_z \vdash e_1 : \tau$ and $\Gamma \vdash e_2 : \tau_z$.
 We must show that $\Gamma \vdash e_1[e_2/z] : \tau$.
 From $\Gamma, z : \tau_z \vdash e_1 : \tau$ and $e_1 = c$, we have $\Gamma, z : \tau_z \vdash c : \tau$.
 By inversion of $\Gamma, z : \tau_z \vdash c : \tau$, we have $\tau = \text{int}$.
 From T-Const, we can construct the derivation $\Gamma \vdash c : \text{int}$;
 therefore, we have $\Gamma \vdash c : \text{int}$.
 By definition of substitution, we have $c[e_2/z] = c$.
 From $\Gamma \vdash c : \text{int}$, $e_1 = c$, $\tau = \text{int}$, and $c[e_2/z] = c$, we have $\Gamma \vdash e_1[e_2/z] : \tau$.

- $e_1 \equiv x$:
 By assumption, we have $\Gamma, z : \tau_z \vdash e_1 : \tau$ and $\Gamma \vdash e_2 : \tau_z$.
 We must show that $\Gamma \vdash e_1[e_2/z] : \tau$.
 From $\Gamma, z : \tau_z \vdash e_1 : \tau$ and $e_1 = x$, we have $\Gamma, z : \tau_z \vdash x : \tau$.
 By inversion of $\Gamma, z : \tau_z \vdash x : \tau$, we have $\Gamma, z : \tau_z @ x \sim \tau$.
 By cases on (the derivation of) $\Gamma, z : \tau_z @ x \sim \tau$.
 - C-Hit concludes the derivation of $\Gamma, z : \tau_z @ x \sim \tau$:
 Therefore, $x = z$ and $\tau = \tau_z$.
 By definition of substitution, we have $z[e_2/z] = e_2$.
 From $\Gamma \vdash e_2 : \tau_z$, $e_1 = x$, $x = z$, $\tau = \tau_z$, and $z[e_2/z] = e_2$,
 we have $\Gamma \vdash e_1[e_2/z] : \tau$.
 - C-Miss concludes the derivation of $\Gamma, z : \tau_z @ x \sim \tau$:
 Therefore, $x \neq z$ and $\Gamma @ x \sim \tau$.
 From T-VAR, we can construct the derivation $\Gamma @ x \sim \tau$;
 therefore, we have $\Gamma \vdash x : \tau$.
 By definition of substitution and $x \neq z$, we have $x[e_2/z] = x$.
 From $\Gamma \vdash x : \tau$, $e_1 = x$, and $x[e_2/z] = x$,
 we have $\Gamma \vdash e_1[e_2/z] : \tau$.

(continued)
• \(e_1 \equiv \lambda x. e_b\):
 By “up to \(\alpha\)-conversion”, we ensure \(x \neq z\) and \(x \notin \text{Dom}(\Gamma)\).
 By assumption, we have \(\Gamma, z : \tau_z \vdash e_1 : \tau\) and \(\Gamma \vdash e_2 : \tau_z\).
 We must show that \(\Gamma \vdash e_1[e_2/z] : \tau\).
 From \(\Gamma, z : \tau_z \vdash e_1 : \tau\) and \(e_1 = \lambda x. e_b\), we have \(\Gamma, z : \tau_z \vdash \lambda x. e_b : \tau\).
 By inversion of \(\Gamma, z : \tau_z \vdash e_2 : \tau\), we have \(\Gamma, z : \tau_z, x : \tau_a \vdash e_b : \tau\) and \(\tau = \tau_a \rightarrow \tau_r\).
 By \text{Exchange} applied to \(\Gamma, z : \tau_z, x : \tau_a \vdash e_b : \tau\) and \(x \neq z\), we have \(\Gamma, x : \tau_a, z : \tau_z \vdash e_b : \tau_r\).
 By \text{Weakening} applied to \(\Gamma \vdash e_2 : \tau_z\) and \(x \notin \text{Dom}(\Gamma)\), we have \(\Gamma, x : \tau_a \vdash e_2 : \tau_z\).
 By the induction hypothesis applied to \(e_b\) with \(\Gamma, x : \tau_a, z : \tau_z \vdash e_b : \tau_r\) and \(\Gamma, x : \tau_a \vdash e_2 : \tau_z\), we have \(\Gamma, x : \tau_a \vdash e_b[e_2/z] : \tau_r\).

 From \text{T-LAM} and \(\Gamma, x : \tau_a \vdash e_b[e_2/z] : \tau_r\), we can construct the derivation \(\Gamma \vdash \lambda x. e_b[e_2/z] : \tau_a \rightarrow \tau_r\).
 Therefore, we have \(\Gamma \vdash \lambda x. e_b[e_2/z] : \tau_a \rightarrow \tau_r\).
 From \(x \notin \text{Dom}(\Gamma)\) and \(\Gamma \vdash e_2 : \tau_z\), we have \(x \notin \text{FV}(e_2)\).
 By definition of substitution and \(x \neq z\) and \(x \notin \text{FV}(e_2)\), we have \((\lambda x. e_b)[e_2/z] = \lambda x. e_b[e_2/z]\).
 From \(\Gamma \vdash \lambda x. e_b[e_2/z] : \tau_a \rightarrow \tau_r, e_1 = \lambda x. e_b, \tau = \tau_a \rightarrow \tau_r\), and \((\lambda x. e_b)[e_2/z] = \lambda x. e_b[e_2/z]\),
 we have \(\Gamma \vdash e_1[e_2/z] : \tau\).

• \(e_1 \equiv ef \ e_a\):
 By assumption, we have \(\Gamma, z : \tau_z \vdash e_1 : \tau\) and \(\Gamma \vdash e_2 : \tau_z\).
 We must show that \(\Gamma \vdash e_1[e_2/z] : \tau\).
 From \(\Gamma, z : \tau_z \vdash e_1 : \tau\) and \(e_1 = ef \ e_a\), we have \(\Gamma, z : \tau_z \vdash ef \ e_a : \tau\).
 By inversion of \(\Gamma, z : \tau_z \vdash e_f \ e_a : \tau\), we have \(\Gamma, z : \tau_z \vdash e_f : \tau_a \rightarrow \tau_r\), \(\Gamma, z : \tau_z \vdash e_a : \tau_a\), and \(\tau = \tau_r\).
 By the induction hypothesis applied to \(e_f\) with \(\Gamma, z : \tau_z \vdash e_f : \tau_a \rightarrow \tau_r\) and \(\Gamma \vdash e_2 : \tau_z\),
 we have \(\Gamma \vdash e_f[e_2/z] : \tau_a \rightarrow \tau_r\).
 By the induction hypothesis applied to \(e_a\) with \(\Gamma, z : \tau_z \vdash e_a : \tau_a\) and \(\Gamma \vdash e_2 : \tau_z\),
 we have \(\Gamma \vdash e_a[e_2/z] : \tau_a\).
 From \text{T-APP}, \(\Gamma \vdash e_f[e_2/z] : \tau_a \rightarrow \tau_r\), and \(\Gamma \vdash e_a[e_2/z] : \tau_a\),
 we can construct the derivation \(\Gamma \vdash e_f[e_2/z] \ e_a[e_2/z] : \tau_r\).
 Therefore, we have \(\Gamma \vdash e_f[e_2/z] \ e_a[e_2/z] : \tau_r\).
 By definition of substitution, we have \((ef \ e_a)[e_2/z] = ef[e_2/z] \ e_a[e_2/z]\).
 From \(\Gamma \vdash ef[e_2/z] \ e_a[e_2/z] : \tau_r, e_1 = ef \ e_a, \tau = \tau_r\), and \((ef \ e_a)[e_2/z] = ef[e_2/z] \ e_a[e_2/z]\),
 we have \(\Gamma \vdash e_1[e_2/z] : \tau\).

Lemma (Exchange): If \(\Gamma, x : \tau_x, y : \tau_y \vdash e : \tau\) and \(x \neq y\), then \(\Gamma, y : \tau_y, x : \tau_x \vdash e : \tau\).

Comments: The Exchange Lemma is a technical lemma, whose proof is omitted but is not difficult. (The proof is by induction on the structure of \(e\).)

Lemma (Weakening): If \(\Gamma \vdash e : \tau\) and \(x \notin \text{Dom}(\Gamma)\), then \(\Gamma, x : \tau_x \vdash e : \tau\).

Comments: The Weakening Lemma is a technical lemma, whose proof is omitted but is not difficult. (The proof is by induction on the structure of \(e\).)