Programming Language Theory

Equivalence
Looking back, looking forward

Done: **IMP**

- abstract syntax
- operational semantics (large-step and small-step)
- semantic properties of (sets of) programs — proofs
- “pseudo-denotational” semantics

Today: Equivalence

- equivalence of programs in a semantics
- equivalence of different semantics

Next: λ-calculus
Equivalence motivation

- Program equivalence (we change the program):
 - code optimizer
 - code maintainer

- Semantics equivalence (we change the language):
 - compiler correctness
 - interpreter optimizer
 - language designer
 - (prove properties for equivalent semantics with easier proof)

Warning: Proofs are easy with the right semantics and lemmas
- (almost never start off with right semantics and lemmas)

Note: Small-step operational semantics often has harder proofs, but models more interesting things
What is equivalence?

Equivalence depends on what is observable!
What is equivalence?

Equivalence depends on what is observable!

- Partial I/O equivalence (if terminates, same ans)
 - while 1 skip equivalent to everything
 - not transitive

- Total I/O equivalence (same termination behavior, same ans)
- Total heap equivalence (same termination behavior, same heaps)
- Equivalence plus complexity bounds
 - Is \(O(2^n) \) really equivalent to \(O(n) \)?

- Syntactic equivalence (perhaps with renaming)
 - too strict to be interesting
What is equivalence?

Equivalence depends on what is observable!

- Partial I/O equivalence (if terminates, same ans)
 - `while 1 skip` equivalent to everything
 - not transitive
- Total I/O equivalence (same termination behavior, same ans)

Equivalence plus complexity bounds

Is $O(2^n)$ really equivalent to $O(n^k)$?

- Syntactic equivalence (perhaps with renaming)
 - too strict to be interesting
What is equivalence?

Equivalence depends on what is observable!

- Partial I/O equivalence (if terminates, same ans)
 - while 1 skip equivalent to everything
 - not transitive

- Total I/O equivalence (same termination behavior, same ans)

- Total heap equivalence (same termination behavior, same heaps)
 - heaps are syntactically equal
 - all variables have the same value
 - almost all variables have the same value
What is equivalence?

Equivalence depends on what is observable!

- Partial I/O equivalence (if terminates, same ans)
 - `while 1 skip` equivalent to everything
 - not transitive
- Total I/O equivalence (same termination behavior, same ans)
- Total heap equivalence (same termination behavior, same heaps)
 - heaps are syntactically equal
 - all variables have the same value
 - almost all variables have the same value
- Equivalence plus complexity bounds
 - Is $O(2^n)$ really equivalent to $O(n)$?
What is equivalence?

Equivalence depends on what is observable!

- Partial I/O equivalence (if terminates, same ans)
 - while 1 skip equivalent to everything
 - not transitive

- Total I/O equivalence (same termination behavior, same ans)

- Total heap equivalence (same termination behavior, same heaps)
 - heaps are syntactically equal
 - all variables have the same value
 - almost all variables have the same value

- Equivalence plus complexity bounds
 - Is $O(2^n)$ really equivalent to $O(n)$?

- Syntactic equivalence (perhaps with renaming)
 - too strict to be interesting
What is equivalence?

Equivalence depends on what is observable!

- Partial I/O equivalence (if terminates, same ans)
 - while 1 skip equivalent to everything
 - not transitive

- Total I/O equivalence (same termination behavior, same ans)

- Total heap equivalence (same termination behavior, same heaps)
 - heaps are syntactically equal
 - all variables have the same value
 - almost all variables have the same value

- Equivalence plus complexity bounds
 - Is $O(2^n)$ really equivalent to $O(n)$?

- Syntactic equivalence (perhaps with renaming)
 - too strict to be interesting
Program example: Strength reduction

Motivation: Strength reduction

▶ a common compiler optimization due to architecture issues

Theorem:

\[H;e * 2 \Downarrow c \text{ if and only if } H;e + e \Downarrow c \]

Proof Sketch:

▶ Just need “inversion on derivation” and math
▶ no induction
Program example: Nested strength reduction

Theorem:

If \(e_1 \) has a subexpression of the form \(e \ast 2 \),
then \(H;e_1 \Downarrow c' \) if and only if \(H;e_2 \Downarrow c' \)
where \(e_2 \) is \(e_1 \) with \(e \ast 2 \) replaced by \(e + e \).
Program example: Nested strength reduction

Theorem:

If e_1 has a subexpression of the form $e \ast 2$, then $H; e_1 \Downarrow c'$ if and only if $H; e_2 \Downarrow c'$ where e_2 is e_1 with $e \ast 2$ replaced by $e + e$.

First, some useful meta-notation:

$$C ::= [\cdot] | C + e | e + C | C \ast e | e \ast C$$

$C[e]$ is “C with e plugged into the hole”.
Program example: Nested strength reduction

Theorem:

If \(e_1 \) has a subexpression of the form \(e * 2 \),
then \(H; e_1 \downarrow c' \) if and only if \(H; e_2 \downarrow c' \)
where \(e_2 \) is \(e_1 \) with \(e * 2 \) replaced by \(e + e \).

First, some useful meta-notation:

\[
C ::= [·] \mid C + e \mid e + C \mid C * e \mid e * C
\]

\(C[e] \) is “\(C \) with \(e \) plugged into the hole”.

Theorem:

If \((e_1 = C[e * 2] \text{ and } e_2 = C[e + e]) \)
then \((H; e_1 \downarrow c' \text{ if and only if } H; e_2 \downarrow c') \).

Proof sketch:

- By structural induction on \(C \).
Small-step program equivalence

These sort of proofs also work with small-step semantics (e.g., IMP statements), but tend to be more cumbersome, even to state.

Example: The statement-sequence operator is associative. That is,

- For all n, if $H; s_1 ; (s_2 ; s_3) \rightarrow^n H'; \text{skip}$, then there exist H'' and n' such that $H;(s_1 ; s_2) ; s_3 \rightarrow^{n'} H''; \text{skip}$ and $H''(\text{ans}) = H'(\text{ans})$.

- If for all n there exist H' and s' such that $H; s_1 ; (s_2 ; s_3) \rightarrow^n H'; s'$, then for all n there exist H'' and s'' such that $H;(s_1 ; s_2) ; s_3 \rightarrow^n H''; s''$.

(Proof needs a much stronger induction hypothesis.)

One way to avoid it: Prove large-step and small-step semantics equivalent, then prove program equivalences in whichever semantics is easier.
Theorem: Semantics are equivalent; $H; e \Downarrow c$ if and only if $H; e \rightarrow^* c$.

Proof: We prove the two directions separately.
Proof, part 1:

Forward: Assume $H;e \downarrow c$; show $\exists n. H;e \rightarrow^n c$.

Lemma (prove it!): If $H;e \rightarrow n e'$, then $H;e_1 + e \rightarrow n e_1 + e'$ and $H;e + e_2 \rightarrow n e' + e_2$.

▶ (Proof uses $[saddl]$ and $[saddr]$.)

Now, prove by structural induction on (the derivation of) $H;e \downarrow c$:

▶ $[const]$: Derivation is via $[const]$ and e is c, so derive $H;c \rightarrow 0 c$.

▶ $[var]$: Derivation is via $[var]$ and e is x and $H @ x; c$, so derive, by $[svar]$ using $H @ x; c$, $H;x \rightarrow 1 c$.

▶ $[add]$: Derivation is via $[add]$ and e is $e_1 + e_2$, $H;e_1 \downarrow c_1$, $H;e_2 \downarrow c_2$, and c is $c_1 + c_2$. By induction, $\exists n_1. H;e_1 \rightarrow n_1 c_1$ and $\exists n_2. H;e_2 \rightarrow n_2 c_2$. By our lemma, $H;e_1 + e_2 \rightarrow n_1 c_1 + e_2$ and $H;c_1 + e_2 \rightarrow n_2 c_1 + c_2$. Derive, by $[sadd]$ and c is $c_1 + c_2$, $H;c_1 + c_2 \rightarrow c$. So derive $H;e_1 + e_2 \rightarrow n_1 + n_2 + 1 c$.

Matthew Fluet
Programming Language Theory
Lecture 06 9
Proof, part 1:

Forward: Assume $H; e \downarrow c$; show $\exists n. H; e \rightarrow^n c$.

Lemma (prove it!): If $H; e \rightarrow^n e'$, then $H; e_1 + e \rightarrow^n e_1 + e'$ and $H; e + e_2 \rightarrow^n e' + e_2$.

▶ (Proof uses [SADDL] and [SADDR].)
Proof, part 1:

Forward: Assume $H;e \Downarrow c$; show $\exists n. \ H;e \rightarrow^n c$.

Lemma (prove it!): If $H;e \rightarrow^n e'$, then $H;e_1 + e \rightarrow^n e_1 + e'$ and $H;e + e_2 \rightarrow^n e' + e_2$.

▶ (Proof uses [SADDL] and [SADDR].)

Now, prove by structural induction on (the derivation of) $H;e \Downarrow c$:
Proof, part 1:

Forward: Assume $H;e \Downarrow c$; show $\exists n. H;e \rightarrow^n c$.

Lemma (prove it!): If $H;e \rightarrow^n e'$, then $H;e_1 + e \rightarrow^n e_1 + e'$ and $H;e + e_2 \rightarrow^n e' + e_2$.

(Proof uses [SADDL] and [SADDR].)

Now, prove by structural induction on (the derivation of) $H;e \Downarrow c$:

- [CONST]: Derivation is via [CONST] and e is c, so derive $H;c \rightarrow^0 c$.

Proof, part 1:

Forward: Assume $H;e \downarrow c$; show $\exists n. H;e \rightarrow^n c$.

Lemma (prove it!): If $H;e \rightarrow^n e'$, then $H;e_1 + e \rightarrow^n e_1 + e'$ and $H;e + e_2 \rightarrow^n e' + e_2$.

▶ (Proof uses [SADDL] and [SADDR].)

Now, prove by structural induction on (the derivation of) $H;e \downarrow c$:

▶ [CONST]: Derivation is via [CONST] and e is c, so derive $H;c \rightarrow^0 c$.

▶ [VAR]: Derivation is via [VAR] and e is x and $H @ x \leadsto c$, so derive, by [SVAR] using $H @ x \leadsto c$, $H;x \rightarrow^1 c$.

Matthew Fluet
Programming Language Theory
Lecture 06
9
Proof, part 1:

Forward: Assume $H;e \Downarrow c$; show $\exists n. H;e \rightarrow^n c$.

Lemma (prove it!): If $H;e \rightarrow^n e'$, then $H;e_1 + e \rightarrow^n e_1 + e'$ and $H;e + e_2 \rightarrow^n e' + e_2$.

▶ (Proof uses [SADDL] and [SADDR].)

Now, prove by structural induction on (the derivation of) $H;e \Downarrow c$:

▶ [CONST]: Derivation is via [CONST] and e is c, so derive $H;c \rightarrow^0 c$.

▶ [VAR]: Derivation is via [VAR] and e is x and $H@x \leadsto c$, so derive, by [SVAR] using $H@x \leadsto c$, $H;x \rightarrow^1 c$.

▶ [ADD]: Derivation is via [ADD] and e is $e_1 + e_2$, $H;e_1 \Downarrow c_1$, $H;e_2 \Downarrow c_2$, and c is $c_1 + c_2$.

By induction, $\exists n_1. H;e_1 \rightarrow^{n_1} c_1$ and $\exists n_2. H;e_2 \rightarrow^{n_2} c_2$.

By our lemma, $H;e_1 + e_2 \rightarrow^{n_1} c_1 + e_2$ and $H;c_1 + e_2 \rightarrow^{n_2} c_1 + c_2$.

Derive, by [SADD] and c is $c_1 + c_2$, $H;c_1 + c_2 \rightarrow c$.

So derive $H;e_1 + e_2 \rightarrow^{n_1+n_2+1} c$.
Proof, part 2:

Backward: Assume $\exists n. \ H;e \rightarrow^{n} c$; show $H;e \downarrow c$.
Proof, part 2:

Backward: Assume $\exists n. H; e \rightarrow^n c$; show $H; e \downarrow c$.

Prove by induction on n:
Proof, part 2:

Backward: Assume \(\exists n. \ H;e \rightarrow^n c \); show \(H;e \downarrow c \).

Prove by induction on \(n \):

\(n = 0 \): \(e \) is \(c \) and \([\text{CONST}]\) lets us derive \(H;c \downarrow c \).
Proof, part 2:

Backward: Assume $\exists n. \mathit{H;}e \rightarrow^n c$; show $\mathit{H;}e \downarrow c$.

Prove by induction on n:

1. $n = 0$: e is c and $[\text{const}]$ lets us derive $\mathit{H;}c \downarrow c$.
2. $n = m + 1$: $\exists e'. \mathit{H;}e \rightarrow e'$ and $\mathit{H;}e' \rightarrow^m c$.

 By induction (on $\mathit{H;}e' \rightarrow^m c$), we have $\mathit{H;}e' \downarrow c$.

 So this lemma suffices: If $\mathit{H;}e \rightarrow e'$ and $\mathit{H;}e' \downarrow c$, then $\mathit{H;}e \downarrow c$.

Proof, part 2:

Backward: Assume $\exists n. H;e \xrightarrow{n} c$; show $H;e \Downarrow c$.

Prove by induction on n:

- $n = 0$: e is c and $[\text{CONST}]$ lets us derive $H;c \Downarrow c$.
- $n = m + 1$: $\exists e'. H;e \rightarrow e'$ and $H;e' \xrightarrow{m} c$.

 By induction (on $H;e' \xrightarrow{m} c$), we have $H;e' \Downarrow c$.

 So this lemma suffices: If $H;e \rightarrow e'$ and $H;e' \Downarrow c$, then $H;e \Downarrow c$.

Prove the lemma by structural induction on (the derivation of) $H;e \rightarrow e'$:
Proof, part 2:

Backward: Assume $\exists n. H;e \rightarrow^n c$; show $H;e \downarrow c$.

Prove by induction on n:

- $n = 0$: e is c and [CONST] lets us derive $H;c \downarrow c$.

- $n = m + 1$: $\exists e'$. $H;e \rightarrow e'$ and $H;e' \rightarrow^m c$.

 By induction (on $H;e' \rightarrow^m c$), we have $H;e' \downarrow c$.

 So this lemma suffices: If $H;e \rightarrow e'$ and $H;e' \downarrow c$, then $H;e \downarrow c$.

Prove the lemma by structural induction on (the derivation of) $H;e \rightarrow e'$:

- [SVAR]: Derivation is via [SVAR] and e is x, $H @ x \leadsto c$, and e' is c, so derive, by [VAR] and $H @ x \leadsto c$, $H;x \downarrow c$.

Proof, part 2:

Backward: Assume $\exists n. \, H;e \rightarrow^n c$; show $H;e \downarrow c$.

Prove by induction on n:

- $n = 0$: e is c and $[\text{CONST}]$ lets us derive $H;c \downarrow c$.

- $n = m + 1$: $\exists e'. \, H;e \rightarrow e'$ and $H;e' \rightarrow^m c$.

 By induction (on $H;e' \rightarrow^m c$), we have $H;e' \downarrow c$.

 So this lemma suffices: If $H;e \rightarrow e'$ and $H;e' \downarrow c$, then $H;e \downarrow c$.

Prove the lemma by structural induction on (the derivation of) $H;e \rightarrow e'$:

- $[\text{SVAR}]$: Derivation is via $[\text{SVAR}]$ and e is x, $H @ x \leadsto c$, and e' is c, so derive, by $[\text{VAR}]$ and $H @ x \leadsto c$, $H;x \downarrow c$.

- $[\text{SADD}]$: Derivation is via $[\text{SADD}]$ and e is $c_1 + c_2$ and e' is $c_1 + c_2$, so derive, by $[\text{CONST}]$ and $[\text{ADD}]$, $H;c_1 + c_2 \downarrow c_1 + c_2$.

Matthew Fluet
Programming Language Theory
Lecture 06
10
Proof, part 2:

Backward: Assume $\exists n. \ H;e \rightarrow^n c$; show $H;e \downarrow c$.

Prove by induction on n:

$\quad n = 0$: e is c and $[\text{CONST}]$ lets us derive $H; c \downarrow c$.

$\quad n = m + 1$: $\exists e'$. $H;e \rightarrow e'$ and $H;e' \rightarrow^m c$.

By induction (on $H;e' \rightarrow^m c$), we have $H;e' \downarrow c$.

So this lemma suffices: If $H;e \rightarrow e'$ and $H;e' \downarrow c$, then $H;e \downarrow c$.

Prove the lemma by structural induction on (the derivation of) $H;e \rightarrow e'$:

$\quad [\text{SVAR}]$: Derivation is via $[\text{SVAR}]$ and e is x, $H@x \rightsquigarrow c$, and e' is c, so derive, by $[\text{VAR}]$ and $H@x \rightsquigarrow c$, $H;x \downarrow c$.

$\quad [\text{SADD}]$: Derivation is via $[\text{SADD}]$ and e is $c_1 + c_2$ and e' is $c_1 + c_2$, so derive, by $[\text{CONST}]$ and $[\text{ADD}]$, $H;c_1 + c_2 \downarrow c_1 + c_2$.

$\quad [\text{SADDL}]$: ...

$\quad [\text{SADDR}]$: ...
Proof, part 2 (cont’d):

- \(n = m + 1: \exists e'. \; H;e \rightarrow e' \) and \(H;e' \rightarrow^m c \).

 By induction (on \(H;e' \rightarrow^m c \)), we have \(H;e' \Downarrow c \).

 So this lemma suffices: If \(H;e \rightarrow e' \) and \(H;e' \Downarrow c \), then \(H;e \Downarrow c \).

Prove the lemma by structural induction on \((\text{the derivation of}) \; H;e \rightarrow e' \):

- \([\text{SADDL}]: \) Derivation is via \([\text{SADDL}]\)

 and \(e \) is \(e_1 + e_2 \), \(H;e_1 \rightarrow e'_1 \), and \(e' \) is \(e'_1 + e_2 \).
Proof, part 2 (cont’d):

- $n = m + 1$: $\exists e'. H; e \rightarrow e'$ and $H; e' \rightarrow^m c$.

 By induction (on $H; e' \rightarrow^m c$), we have $H; e' \Downarrow c$.

 So this lemma suffices: If $H; e \rightarrow e'$ and $H; e' \Downarrow c$, then $H; e \Downarrow c$.

Prove the lemma by structural induction on (the derivation of) $H; e \rightarrow e'$:

- [SADDL]: Derivation is via [SADDL]

 and e is $e_1 + e_2$, $H; e_1 \rightarrow e'_1$, and e' is $e'_1 + e_2$.

 By $H; e'_1 + e_2 \Downarrow c$ and inversion,

 $H; e'_1 \Downarrow c_1$, $H; e_2 \Downarrow c_2$, and c is $c_1 + c_2$.
Proof, part 2 (cont’d):

\[n = m + 1: \exists e'. H; e \rightarrow e' \text{ and } H; e' \rightarrow^m c. \]

By induction (on \(H; e' \rightarrow^m c \)), we have \(H; e' \Downarrow c \).

So this lemma suffices: If \(H; e \rightarrow e' \) and \(H; e' \Downarrow c \), then \(H; e \Downarrow c \).

Prove the lemma by structural induction on (the derivation of) \(H; e \rightarrow e' \):

\[\begin{align*}
\text{[saddl]: Derivation is via [saddl]} & \\
\text{and } e & \text{ is } e_1 + e_2, \ H; e_1 \rightarrow e_1', \text{ and } e' \text{ is } e_1' + e_2. \\
\text{By } H; e_1' + e_2 & \Downarrow c \text{ and inversion, } \\
H; e_1' & \Downarrow c_1, \ H; e_2 \Downarrow c_2, \text{ and } c \text{ is } c_1 + c_2. \\
\text{By the inductive hypothesis with } H; e_1 & \rightarrow e_1' \text{ and } H; e_1' \Downarrow c_1, \\
H; e_1 & \Downarrow c_1.
\end{align*} \]
Proof, part 2 (cont’d):

$n = m + 1$: \(\exists e'. \ H;e \rightarrow e' \) and \(H;e' \xrightarrow{\text{m}} c \).

By induction (on \(H;e' \xrightarrow{\text{m}} c \)), we have \(H;e' \downarrow c \).

So this lemma suffices: If \(H;e \rightarrow e' \) and \(H;e' \downarrow c \), then \(H;e \downarrow c \).

Prove the lemma by structural induction on (the derivation of) \(H;e \rightarrow e' \):

- [\text{saddl}]: Derivation is via [\text{saddl}]
 and \(e \) is \(e_1 + e_2 \), \(H;e_1 \rightarrow e_1' \), and \(e' \) is \(e_1' + e_2 \).
 By \(H;e_1' + e_2 \downarrow c \) and inversion,
 \(H;e_1' \downarrow c_1 \), \(H;e_2 \downarrow c_2 \), and \(c \) is \(c_1 + c_2 \).
 By the inductive hypothesis with \(H;e_1 \rightarrow e_1' \) and \(H;e_1' \downarrow c_1 \),
 \(H;e_1 \downarrow c_1 \).
 So derive, by [\text{add}] with \(H;e_1 \downarrow c_1 \) and \(H;e_2 \downarrow c_2 \),
 \(H;e_1 + e_2 \downarrow c \).
Proof, part 2 (cont’d):

- $n = m + 1$: $\exists e'$. $H; e \rightarrow e'$ and $H; e' \rightarrow^m c$.

 By induction (on $H; e' \rightarrow^m c$), we have $H; e' \Downarrow c$.

 So this lemma suffices: If $H; e \rightarrow e'$ and $H; e' \Downarrow c$, then $H; e \Downarrow c$.

Prove the lemma by structural induction on (the derivation of) $H; e \rightarrow e'$:

- **[SADDL]**: Derivation is via **[SADDL]**
 and e is $e_1 + e_2$, $H; e_1 \rightarrow e'_1$, and e' is $e'_1 + e_2$.

 By $H; e'_1 + e_2 \Downarrow c$ and inversion,
 $H; e'_1 \Downarrow c_1$, $H; e_2 \Downarrow c_2$, and c is $c_1 + c_2$.

 By the inductive hypothesis with $H; e_1 \rightarrow e'_1$ and $H; e'_1 \Downarrow c_1$,
 $H; e_1 \Downarrow c_1$.

 So derive, by **[ADD]** with $H; e_1 \Downarrow c_1$ and $H; e_2 \Downarrow c_2$,
 $H; e_1 + e_2 \Downarrow c$.

- **[SADDR]**: Analogous to **[SADDL]**.
A nice payoff

Theorem: The small-step semantics is deterministic.

- if \(H; e \Rightarrow^* c_1 \) and \(H; e \Rightarrow^* c_2 \), then \(c_1 = c_2 \).

Not obvious (see [SADDL] and [SADDR]), nor do I know a direct proof.

- Given \(((1 + 2) + (3 + 4)) + (5 + 6)) + (7 + 8)\)
 there are many execution sequences, all of which produce 36, but with different intermediate expressions.

(Indirect) Proof:

- Large-step evaluation is deterministic (easy proof by induction).
- Small-step and and large-step are equivalent (just proved that).
- So small-step is deterministic.
- (Convince yourself that a deterministic and a nondeterministic semantics can’t be equivalent with our definition of equivalence.)
Conclusions

- Equivalence is a subtle concept.
- Proofs “seem obvious” only when the definitions are right.
- Some other language-equivalence claims:
Conclusions

- Equivalence is a subtle concept.
- Proofs “seem obvious” only when the definitions are right.
- Some other language-equivalence claims:

Replace [WHILE] rule with

\[
\begin{align*}
H; e \Downarrow c & \quad c \leq 0 \\
H; \text{while } e \text{ s } & \rightarrow H; \text{skip}
\end{align*}
\]

\[
\begin{align*}
H; e \Downarrow c & \quad c > 0 \\
H; \text{while } e \text{ s } & \rightarrow H; \text{s ; while } e \text{ s}
\end{align*}
\]

Theorem: Languages are equivalent.
Conclusions

- Equivalence is a subtle concept.
- Proofs “seem obvious” only when the definitions are right.
- Some other language-equivalence claims:

Replace \texttt{[WHILE]} rule with

\[
\frac{H;e \Downarrow c \quad c \leq 0}{H;\text{while } e \ s \rightarrow H;\text{skip}} \quad \frac{H;e \Downarrow c \quad c > 0}{H;\text{while } e \ s \rightarrow H; s \ ; \ \text{while } e \ s}
\]

Theorem: Languages are equivalent. (True)
Conclusions

- Equivalence is a subtle concept.
- Proofs “seem obvious” only when the definitions are right.
- Some other language-equivalence claims:

 Replace [WHILE] rule with

\[
\begin{align*}
H;e \Downarrow c & \quad c \leq 0 \\
H;\text{while } e \text{ s } & \rightarrow H;\text{skip} \\
H;e \Downarrow c & \quad c > 0 \\
H;\text{while } e \text{ s } & \rightarrow H;s ; \text{ while } e \text{ s}
\end{align*}
\]

Theorem: Languages are equivalent. (True)

Change syntax of heap and replace [ASSGN] and [VAR] rules with

\[
\begin{align*}
H ; x := e & \rightarrow H , x \longmapsto e ; \text{skip} \\
H @ x & \leadsto e \\
H;e \Downarrow c & \quad H;x \Downarrow c
\end{align*}
\]

Theorem: Languages are equivalent.
Conclusions

- Equivalence is a subtle concept.
- Proofs “seem obvious” only when the definitions are right.
- Some other language-equivalence claims:

Replace [WHILE] rule with

\[
\begin{align*}
H;e \downarrow c & \quad c \leq 0 \\
\hline \\
H;\text{while } e\ s & \rightarrow H;\text{skip}
\end{align*}
\]

\[
\begin{align*}
H;e \downarrow c & \quad c > 0 \\
\hline \\
H;\text{while } e\ s & \rightarrow H;s\ ;\ \text{while } e\ s
\end{align*}
\]

Theorem: Languages are equivalent. \hspace{1cm} (True)

Change syntax of heap and replace [ASSGN] and [VAR] rules with

\[
\begin{align*}
H;\mathbin{\triangleleft} x := e & \rightarrow H, x \mapsto e;\text{skip} \\
\hline \\
H;\mathbin{\triangleleft} x \leadsto e & \rightarrow H;e \downarrow c
\end{align*}
\]

Theorem: Languages are equivalent. \hspace{1cm} (False)