Programming Language Theory

Operational Semantics for **IMP**
Looking back, looking forward

- Done: IMP syntax, structural induction

- Today: IMP operational semantics
 - One of the two or three most important lectures of course

- Tonight: You could (almost?) finish Homework 1
Review: **IMP** abstract syntax

IMP’s abstract syntax is defined inductively (using BNF):

\[
 s ::= x := e \mid \text{skip} \mid s \; ; \; s \mid \text{if} \; e \; s \; s \mid \text{while} \; e \; s
\]

\[
 e ::= c \mid x \mid e + e \mid e \times e
\]

\[
 (c \in \{ \ldots, -2, -1, 0, 1, 2, \ldots \})
\]

\[
 (x \in \{ x_1, x_2, \ldots, y_1, y_2, \ldots, z_1, z_2, \ldots, \ldots \})
\]

We haven’t yet said what programs *mean*! (Syntax is boring)

Encode our “social understanding” about variables and control flow.

Emphasis on “social understanding”:

- we define the meaning of a program language
- the meaning of a programming language is not dictated
Outline

- Semantics for expressions
 - Informal idea; the need for *heaps*
 - Definition of heaps
 - The evaluation *judgement* (a relation form)
 - The evaluation *inference rules* (the relation definition)
 - Using inference rules
 - *Derivation trees* as interpreters
 - Or as *proofs* about expressions
 - *Metatheory*: Proofs about the semantics

- Then semantics for statements
 - (rinse and repeat)
Informal idea

Given expression e, what integer c does it evaluate to?

\[1 + 2 \quad \text{and} \quad x + 2 \]
Informal idea

Given expression \(e \), what integer \(c \) does it evaluate to?

\[
1 + 2 \quad \quad \quad \quad x + 2
\]

It depends on the values of variables (of course).

Use a heap \(H \) to encode a total function from variables to constants.

- Could use partial functions,
 but then \(\exists H \) and \(e \) for which there is no \(c \)

We’ll define a relation over triples of \(H \), \(e \), and \(c \).

- Will turn out to be a (total) function
 if we view \(H \) and \(e \) as inputs and \(c \) as output.

- With our metalanguage, it is easier to define a relation
 and then prove that it is a function (if, in fact, it is).
Heaps

An abstract syntax for heaps:

\[
H ::= \cdot \mid H, x \mapsto c
\]

Describe heaps as a data structure.

A lookup-function for heaps:

\[
H(x) = \begin{cases}
 c & \text{if } H = H', x \mapsto c \\
 H'(x) & \text{if } H = H', y \mapsto c \text{ and } x \neq y \\
 0 & \text{if } H = \cdot
\end{cases}
\]

Last case avoids “errors” (makes the function total)

“What heap to use” will arise in the semantics of statements

- For expression evaluation, “we are given an \(H \)"
The judgement

We will write:

\[H; e \downarrow c \]

to mean “\(e \) evaluates to \(c \) under heap \(H \)”.

We just made up metasyntax \(H; e \downarrow c \) to follow PL convention and to distinguish it from other relations.

It is just a relation on triples of the form \((H, e, c) \).
The judgement

We will write:

\[H; e \downarrow c \]

to mean “\(e \) evaluates to \(c \) under heap \(H \)”.

We just made up metasyntax \(H; e \downarrow c \) to follow PL convention and to distinguish it from other relations.

It is just a relation on triples of the form \((H, e, c) \).

We can write \(\cdot, x \mapsto 3; x + y \downarrow 3 \), which will turn out to be \textit{true} (this triple will be in the relation we define).

Or \(\cdot, x \mapsto 3; x + y \downarrow 6 \), which will turn out to be \textit{false} (this triple will not be in the relation we define).
Inference rules

\[
\text{CONST} \\
H; c \Downarrow c
\]

\[
\text{ADD} \\
H; e_1 \Downarrow c_1 \quad H; e_2 \Downarrow c_2 \\
\frac{}{H; e_1 + e_2 \Downarrow c_1 + c_2}
\]

\[
\text{VAR} \\
H; x \Downarrow H(x)
\]

\[
\text{MULT} \\
H; e_1 \Downarrow c_1 \quad H; e_2 \Downarrow c_2 \\
\frac{}{H; e_1 \ast e_2 \Downarrow c_1 \ast c_2}
\]

Top: hypotheses
Bottom: conclusion

By definition, if all hypotheses hold, then the conclusion holds.

Each rule is a \textit{schema} that you “instantiate consistently”:

- Rules “work” “for all” \(H, c, e_1 \), etc.
- But “each” \(e_1 \) has to be the “same” expression.
Instantiating rules

Example instantiation:

\[\cdot, y \mapsto 4; 3 + y \Downarrow 7 \]
\[\cdot, y \mapsto 4; 5 \Downarrow 5 \]
\[\cdot, y \mapsto 4;(3 + y) + 5 \Downarrow 12 \]

\[\text{ADD} \]

Instantiates:

\[H; e_1 \Downarrow c_1 \quad H; e_2 \Downarrow c_2 \]

\[H; e_1 + e_2 \Downarrow c_1 + c_2 \]

with:

\[H = \cdot, y \mapsto 4 \]
\[e_1 = 3 + y \quad c_1 = 7 \]
\[e_2 = 5 \quad c_2 = 5 \]
Derivations

A (complete) derivation is
a tree of instantiations with axioms at the leaves.

Example:

\[
\begin{align*}
\cdot, y & \mapsto 4;3 \Downarrow 3 & \text{CONST} \\
\cdot, y & \mapsto 4;y \Downarrow 4 & \text{VAR} \\
\cdot, y & \mapsto 4;3 + y \Downarrow 7 & \text{ADD} \\
\cdot, y & \mapsto 4;(3 + y) + 5 \Downarrow 12 & \text{ADD} \\
\end{align*}
\]

In theorems and proofs, we write “\(H;e \Downarrow c\)”
to mean “there exists a derivation with \(H;e \Downarrow c\) at the root”.

Relations

What relation do our inference rules define?

▶ Let R_0 be the empty relation (no triples).

▶ For $i > 0$, let R_i be R_{i-1} union all $H;e \Downarrow c$ such that we can instantiate some inference rule to have conclusion $H;e \Downarrow c$ and all its hypotheses in R_{i-1}.

▶ R_i is all triples at the bottom of height-j complete derivations for $j \leq i$.

▶ Let $R_\infty = \bigcup_{i \geq 0} R_i$. This is the relation we defined.

▶ R_∞ is all triples at the bottom of complete derivations.

For the math folks:

R_∞ is the smallest relation closed under the inference rules.
What are these things?

We can view the inference rules as defining an *interpreter*.
▶ Complete derivation shows *(recursive)* calls to the “eval exp” function.
 ▶ Recursive calls from conclusion to hypotheses.
 ▶ Syntax-directed means the interpreter need not “search” or “guess”.
▶ See SML code in next lecture and Homework 2.

Or we can view the inference rules as defining a *proof system*.
▶ Complete derivation proves facts *(from other facts)* starting with axioms.
 ▶ Facts established from hypotheses to conclusions.

Note: Our semantics is *syntax-directed*.
▶ Exactly one inference rule for each variant of syntax.
On to statements

A statement doesn't produce an integer constant.
On to statements

A statement doesn't produce an integer constant.

It produces a new, possibly different, heap.

▶ If it terminates.
On to statements

A statement doesn't produce an integer constant.

It produces a new, possibly different, heap.

▶ If it terminates.

We could define $H_1; s \downarrow H_2$.

▶ Would be a partial function from H_1 and s to H_2.

▶ When would it not be defined?

▶ Works fine; could be a homework problem.
On to statements

A statement doesn't produce an integer constant.

It produces a new, possibly different, heap.

▶ If it terminates.

We could define $H_1; s \downarrow H_2$.

▶ Would be a partial function from H_1 and s to H_2.
 ▶ When would it not be defined?

▶ Works fine; could be a homework problem.

Instead, we will define a “small-step” semantics and then “iterate” to “run the program”.

\[
H_1; s_1 \rightarrow H_2; s_2
\]
Statement semantics

\[H_1; s_1 \rightarrow H_2; s_2 \]

Assign

\[
\frac{H; e \Downarrow c}{H; x := e \rightarrow H, x \mapsto c; \text{skip}}
\]

SeqSkip

\[
\frac{H; \text{skip} ; s \rightarrow H; s}{\text{SeqSkip}}
\]

SeqStep

\[
\frac{H; s_1 \rightarrow H'; s'_1}{H; s_1 ; s_2 \rightarrow H'; s'_1 ; s_2}
\]

IfT

\[
\frac{H; e \Downarrow c}{H; \text{if } e \ s_1 \ s_2 \rightarrow H; s_1}
\]

IfF

\[
\frac{H; e \Downarrow c}{H; \text{if } e \ s_1 \ s_2 \rightarrow H; s_2}
\]

Matthew Fluet

Programming Language Theory

Lecture 03
Statement semantics (cont’d)

What about $\textbf{while } e \ s$?

- Intuitively, do s and loop if $e > 0$.

\[
\begin{array}{c}
\text{WHILE} \\
H;\text{while } e \ s \rightarrow H;\text{if } e \ (s ; \text{while } e \ s) \ \text{skip}
\end{array}
\]

Many other equivalent definitions possible.
Program semantics

Defined $H; s \rightarrow H'; s'$, but what does a whole program “s” mean/do?

Iterate:

$$H_1; s_1 \rightarrow H_2; s_2 \rightarrow H_3; s_3 \rightarrow \cdots$$

with each step justified by a complete derivation using our single-step statement semantics.
Program semantics (cont’d)

Let $H_1; s_1 \rightarrow^n H_2; s_2$ mean “$H_1; s_1$ becomes $H_2; s_2$ after n steps”.

Let $H_1; s_1 \rightarrow^* H_2; s_2$ mean “$H_1; s_1$ becomes $H_2; s_2$ after 0 or more steps”.

► “there exists some n such that $H_1; s_1 \rightarrow^n H_2; s_2$”

Pick a special “answer” variable ans.

The program s produces c if $\cdot ; s \rightarrow^* H; \text{skip}$ and $H(\text{ans}) = c$.

Does every s produce a c?
Example program execution

\[x := 3 \ ; \ (y := 1 \ ; \ \textbf{while } x \ (y := y \times x \ ; \ x := x + -1)) \]

Let’s write some of the state sequence. You can justify each step with a full derivation. Let \(s = (y := y \times x \ ; \ x := x + -1) \).

\[\cdot \ ; \ x := 3 \ ; \ (y := 1 \ ; \ \textbf{while } x \ s) \]
Example program execution

\[
x := 3 ; (y := 1 ; \textbf{while} \ x (y := y \ast x ; x := x + -1)) \]

Let’s write some of the state sequence.
You can justify each step with a full derivation.
Let \(s = (y := y \ast x ; x := x + -1) \).

\[
\begin{align*}
\cdot ; x := 3 ; & \ (y := 1 ; \textbf{while} \ x \ s) \\
\textbf{ASSIGN} & \\
\textbf{SEQSTEP} & \rightarrow \ \\
\cdot, x \mapsto 3 ; \textbf{skip} ; (y := 1 ; \textbf{while} \ x \ s)
\end{align*}
\]
Example program execution

\[
x := 3 \ ; \ (y := 1 \ ; \ \textbf{while} \ x \ (y := y \times x \ ; \ x := x + -1))
\]

Let’s write some of the state sequence.
You can justify each step with a full derivation.
Let \(s = (y := y \times x \ ; \ x := x + -1) \).

\[
\cdot \ ; \ x := 3 \ ; \ (y := 1 \ ; \ \textbf{while} \ x \ s)
\]

\[
\text{ASSIGN} \quad \xrightarrow{\text{SEQSTEP}} \quad \cdot, \ x \mapsto 3 \ ; \ \text{skip} \ ; \ (y := 1 \ ; \ \textbf{while} \ x \ s)
\]

\[
\text{SEQSKIP} \quad \xrightarrow{\text{SEQSKIP}} \quad \cdot, \ x \mapsto 3 \ ; \ y := 1 \ ; \ \textbf{while} \ x \ s
\]
Let’s write some of the state sequence.
You can justify each step with a full derivation.
Let \(s = (y := y \times x ; x := x + -1) \).

\[
\begin{align*}
\cdot ; x := 3 ; (y := 1 ; \text{while } x \ (y := y \times x ; x := x + -1))
\end{align*}
\]
Example program execution

\[\text{x := 3 ; (y := 1 ; while x (y := y * x ; x := x + -1))} \]

Let’s write some of the state sequence.
You can justify each step with a full derivation.
Let \(s = (y := y * x ; x := x + -1) \).

\[
\begin{align*}
\text{· ; x := 3 ; (y := 1 ; while x s)} \\
\text{assign seqStep} & \rightarrow \text{·, x \mapsto 3 ; skip ; (y := 1 ; while x s)} \\
\text{seqSkip} & \rightarrow \text{·, x \mapsto 3 ; y := 1 ; while x s} \\
\text{assign seqStep} & \rightarrow \text{·, x \mapsto 3, y \mapsto 1 ; skip ; while x s} \\
\text{seqSkip} & \rightarrow \text{·, x \mapsto 3, y \mapsto 1 ; while x s}
\end{align*}
\]
Example program execution

\[
x := 3 ; (y := 1 ; \text{while } x (y := y \times x ; x := x + -1))
\]

Let’s write some of the state sequence.
You can justify each step with a full derivation.
Let \(s = (y := y \times x ; x := x + -1) \).

\[
\cdot ; x := 3 ; (y := 1 ; \text{while } x s)
\]

\[
\text{assign} \quad \text{seqStep} \rightarrow \cdot, x \mapsto 3 ; \text{skip} ; (y := 1 ; \text{while } x s)
\]

\[
\text{seqSkip} \rightarrow \cdot, x \mapsto 3 ; y := 1 ; \text{while } x s
\]

\[
\text{assign} \quad \text{seqStep} \rightarrow \cdot, x \mapsto 3, y \mapsto 1 ; \text{skip} ; \text{while } x s
\]

\[
\text{seqSkip} \rightarrow \cdot, x \mapsto 3, y \mapsto 1 ; \text{while } x s
\]

\[
\text{while} \rightarrow \cdot, x \mapsto 3, y \mapsto 1 ; \text{if } x (s ; \text{while } x s) \text{ skip}
\]
Example program execution (cont’d)

\[
\text{WHILE} \quad \rightarrow \quad \cdot, x \mapsto 3, y \mapsto 1 \; ; \; \text{if } x \; (s \; ; \; \text{while } x \; s) \; \text{skip}
\]
Example program execution (cont’d)

\[
\text{WHILE} \quad \rightarrow \quad \cdot, \ x \mapsto 3, \ y \mapsto 1 \ ; \ \text{if} \ x \ (s \ ; \ \text{while} \ x \ s) \ \text{skip} \\
\text{IFT} \quad \rightarrow \quad \cdot, \ x \mapsto 3, \ y \mapsto 1 \ ; \ (y := y \ast x \ ; \ x := x + -1) \ ; \ \text{while} \ x \ s
\]
Example program execution (cont’d)

\[
\begin{align*}
\text{WHILE} & \quad \rightarrow \quad \cdot, x \mapsto 3, y \mapsto 1; \text{if } x (s ; \text{while } x \ s) \text{ skip} \\
\text{IFT} & \quad \rightarrow \quad \cdot, x \mapsto 3, y \mapsto 1; (y := y \ast x ; x := x + -1) ; \text{while } x \ s \\
\text{ASSIGN} & \quad \rightarrow \quad \cdot, x \mapsto 3, y \mapsto 1, y \mapsto 3; (\text{skip} ; x := x + -1) ; \text{while } x \ s
\end{align*}
\]
Example program execution (cont’d)

\[
\text{WHILE} \quad \rightarrow \quad \cdot, x \mapsto 3, y \mapsto 1 \; ; \; \text{if} \; x \; (s \; ; \; \text{while} \; x \; s) \; \text{skip}
\]

\[
\text{IFT} \quad \rightarrow \quad \cdot, x \mapsto 3, y \mapsto 1 \; ; \; (y \; := \; y \; * \; x \; ; \; x \; := \; x \; + \; -1) \; ; \; \text{while} \; x \; s
\]

\[
\text{ASSIGN} \quad \frac{\text{SEQSTEP}}{} \quad \rightarrow \quad \cdot, x \mapsto 3, y \mapsto 1, y \mapsto 3 \; ; \; (\text{skip} \; ; \; x \; := \; x \; + \; -1) \; ; \; \text{while} \; x \; s
\]

\[
\text{SEQSTEP} \quad \frac{\text{SEQSTEP}}{} \quad \rightarrow \quad \cdot, x \mapsto 3, y \mapsto 1, y \mapsto 3 \; ; \; x \; := \; x \; + \; -1 \; ; \; \text{while} \; x \; s
\]
Example program execution (cont’d)

\[
\text{WHILE} \quad \rightarrow \quad \cdot, x \mapsto 3, y \mapsto 1 ; \text{if } x (s ; \text{while } x s) \text{ skip}
\]

\[
\text{IFT} \quad \rightarrow \quad \cdot, x \mapsto 3, y \mapsto 1 ; (y := y \times x ; x := x + \text{-}1) ; \text{while } x s
\]

\[
\text{ASSIGN}_{\text{SEQSTEP}} \quad \rightarrow \quad \cdot, x \mapsto 3, y \mapsto 1, y \mapsto 3 ; (\text{skip} ; x := x + \text{-}1) ; \text{while } x s
\]

\[
\text{SEQSTEP}_{\text{SEQSTEP}} \quad \rightarrow \quad \cdot, x \mapsto 3, y \mapsto 1, y \mapsto 3 ; x := x + \text{-}1 ; \text{while } x s
\]

\[
\text{SEQSTEP}_{\text{SEQSTEP}} \quad \rightarrow \quad \cdot, x \mapsto 3, y \mapsto 1, y \mapsto 3, x \mapsto 2 ; \text{skip} ; \text{while } x s
\]
Example program execution (cont’d)

<table>
<thead>
<tr>
<th>Step</th>
<th>Transition</th>
<th>State Changes</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>WHILE</td>
<td>→ ., x ↦ 3, y ↦ 1 ; if x (s ; while x s) skip</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IF T</td>
<td>→ ., x ↦ 3, y ↦ 1 ; (y := y * x ; x := x + -1) ; while x s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASSIGN</td>
<td>→ ., x ↦ 3, y ↦ 1, y ↦ 3 ; (skip ; x := x + -1) ; while x s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEQSTEP</td>
<td>→ ., x ↦ 3, y ↦ 1, y ↦ 3 ; x := x + -1 ; while x s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEQSTEP</td>
<td>→ ., x ↦ 3, y ↦ 1, y ↦ 3, x ↦ 2 ; skip ; while x s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEQSTEP</td>
<td>→ ., x ↦ 3, y ↦ 1, y ↦ 3, x ↦ 2 ; while x s</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Example program execution (cont’d)

\[
\text{WHILE} \quad \rightarrow \quad \cdot, x \mapsto 3, y \mapsto 1; \text{if } x (s; \text{while } x \ s) \text{ skip}
\]
\[
\text{IFT} \quad \rightarrow \quad \cdot, x \mapsto 3, y \mapsto 1; (y := y \ast x; x := x + 1) ; \text{while } x \ s
\]
\[
\text{ASSIGN SEQSTEP} \quad \rightarrow \quad \cdot, x \mapsto 3, y \mapsto 1, y \mapsto 3; (\text{skip}; x := x + 1) ; \text{while } x \ s
\]
\[
\text{SEQSTEP} \quad \rightarrow \quad \cdot, x \mapsto 3, y \mapsto 1, y \mapsto 3; x := x + 1 ; \text{while } x \ s
\]
\[
\text{ASSIGN SEQSTEP} \quad \rightarrow \quad \cdot, x \mapsto 3, y \mapsto 1, y \mapsto 3, x \mapsto 2 ; \text{skip} ; \text{while } x \ s
\]
\[
\text{SEQSTEP} \quad \rightarrow \quad \cdot, x \mapsto 3, y \mapsto 1, y \mapsto 3, x \mapsto 2 ; \text{while } x \ s
\]
\[
\text{WHILE} \quad \rightarrow \quad \ldots, y \mapsto 3, x \mapsto 2; \text{if } x (s; \text{while } x \ s) \text{ skip}
\]
\[
\ldots
\]
Example program execution (cont’d)

\[
\text{WHILE} \rightarrow \cdot, x \mapsto 3, y \mapsto 1; \text{if } x \ (s ; \text{while } x \ s) \ \text{skip}
\]

\[
\text{IFT} \rightarrow \cdot, x \mapsto 3, y \mapsto 1; (y := y \times x ; x := x + \mathbf{-1}) ; \text{while } x \ s
\]

\[
\frac{\text{ASSIGN}}{\text{SEQSTEP}} \rightarrow \cdot, x \mapsto 3, y \mapsto 1, y \mapsto 3 ; (\text{skip ; } x := x + \mathbf{-1}) ; \text{while } x \ s
\]

\[
\frac{\text{SEQSTEP}}{\text{SEQSTEP}} \rightarrow \cdot, x \mapsto 3, y \mapsto 1, y \mapsto 3 ; x := x + \mathbf{-1} ; \text{while } x \ s
\]

\[
\frac{\text{ASSIGN}}{\text{SEQSTEP}} \rightarrow \cdot, x \mapsto 3, y \mapsto 1, y \mapsto 3, x \mapsto 2 ; \text{skip ; while } x \ s
\]

\[
\frac{\text{SEQSTEP}}{\text{SEQSTEP}} \rightarrow \cdot, x \mapsto 3, y \mapsto 1, y \mapsto 3, x \mapsto 2 ; \text{while } x \ s
\]

\[
\text{WHILE} \rightarrow \ldots, y \mapsto 3, x \mapsto 2; \text{if } x \ (s ; \text{while } x \ s) \ \text{skip}
\]

\[
\ldots \rightarrow \ldots, y \mapsto 6, x \mapsto 0 ; \text{skip}
\]
Where we are

We have defined $H;e \Downarrow c$ and $H;s \rightarrow H';s'$
and extended the latter to give a whole program s a meaning.

We have used “operational semantics”:

- Definition by interpretation:
 - program means what an interpreter (written in a metalanguage) says it means
 - interpreter for an abstract machine (sometimes, very abstract)
- The way we did expressions is “large-step” (or, “natural”)
- The way we did statements is “small-step” (or, “structured”)
Where we are

We have defined $H;e \downarrow c$ and $H;s \rightarrow H';s'$ and extended the latter to give a whole program s a meaning.

We have used “operational semantics”:

- Definition by interpretation:
 - program means what an interpreter (written in a metalanguage) says it means
 - interpreter for an *abstract machine* (sometimes, *very* abstract)
- The way we did expressions is “large-step” (or, “natural”)
- The way we did statements is “small-step” (or, “structured”)

Large-step does not distinguish errors and divergence.

- But we defined IMP to have no errors
- And expressions never diverge

Large-step simpler than small-step when appropriate.
Judgements and Inference Rules

There is a lot of convention built into judgements and inference rules:

- conclusion must be a judgement
- hypotheses must be judgements or logical formulae
- judgements in conclusion or hypotheses may be constrained to elements of a specific syntactic form
- metavariables that appear in conclusion are \forall quantified
- metavariables that do not appear in conclusion are \exists quantified
- repeated metavariables are the “same”
 - contrast with BNF, where repeated metavariables are “different”
Judgements and Inference Rules

This,

\[
\begin{align*}
&\text{ADD} \quad H;e_1 \downarrow c_1 \quad H;e_2 \downarrow c_2 \\
&H;e_1 + e_2 \downarrow c_1+c_2
\end{align*}
\]

is equivalent to

\[
\begin{align*}
&\text{ADD} \quad e = e_1 + e_2 \quad H;e_1 \downarrow c_1 \quad H;e_2 \downarrow c_2 \quad c = c_1+c_2 \\
&H;e \downarrow c
\end{align*}
\]

which is read:

For all heaps \(H\), expressions \(e\), and constants \(c\), if there exist expressions \(e_1\) and \(e_2\) and constants \(c_1\) and \(c_2\) and \(e = e_1 + e_2\), \(H;e_1 \downarrow c_1\), \(H;e_2 \downarrow c_2\), and \(c = c_1+c_2\) are all true (provable), then \(H;e \downarrow c\) is true (provable).
Judgements and Inference Rules

There is a lot of convention built into judgements and inference rules:

- conclusion must be a judgement
- hypotheses must be judgements or logical formulae
- judgements in conclusion or hypotheses may be constrained to elements of a specific syntactic form
- metavariables that appear in conclusion are \forall quantified
- metavariables that do not appear in conclusion are \exists quantified
- repeated metavariables are the “same”
 - contrast with BNF, where repeated metavariables are “different”
Judgements and Inference Rules

Judgements and inference rules are versatile PL notation.

Could have defined syntax using a judgement and inference rules:

\[
\begin{align*}
 e & \rightarrow \text{exp} \\
 c \& \text{exp} & \rightarrow \text{exp} \\
 x \& \text{exp} & \rightarrow \text{exp} \\
 e_1 \& \text{exp} & \cdot e_2 \& \text{exp} & \rightarrow \text{exp} \\
 e_1 \& \text{exp} & + e_2 \& \text{exp} & \rightarrow \text{exp}
\end{align*}
\]
Judgements and Inference Rules

Judgements and inference rules are versatile PL notation.

Could have defined heap lookup using a judgement and inference rules:

\[H \mathrel{@} x \leadsto c \]

EMPTY

\[\cdot \mathrel{@} x \leadsto 0 \]

HIT

\[H', x \mapsto c \mathrel{@} x \leadsto c \]

MISS

\[x \neq y' \quad H' \mathrel{@} x \leadsto c \]

\[H', y' \mapsto c' \mathrel{@} x \leadsto c \]
Judgements and Inference Rules

Judgements and inference rules are versatile PL notation.

Could have defined multi-step statement semantics using judgements and inference rules:

\[H_1; s_1 \rightarrow^n H_2; s_2 \]

\[H_1; s_1 \rightarrow^0 H; s \]

\[H_1; s_1 \rightarrow^* H_2; s_2 \]

\[H_1; s_1 \rightarrow^n H_2; s_2 \quad H_2; s_2 \rightarrow H_3; s_3 \]

\[H_1; s_1 \rightarrow^{n+1} H_3; s_3 \]

Note: With these inference rules, complete derivations of \(H_1; s_1 \rightarrow^* H_2; s_2 \) are unique.
Judgements and Inference Rules

Judgements and inference rules are versatile PL notation.

Could have defined multi-step statement semantics using judgements and inference rules:

\[
\begin{align*}
H_1; s_1 &\rightarrow^* H_2; s_2 \\
H; s &\rightarrow^* H; s \\
H_1; s_1 &\rightarrow^* H_2; s_2 \\
H_2; s_2 &\rightarrow^* H_3; s_3 \\
H_1; s_1 &\rightarrow^* H_3; s_3 \\
H_1; s_1 &\rightarrow H_2; s_2 \\
H_1; s_1 &\rightarrow^* H_2; s_2
\end{align*}
\]

Note: With these inference rules, complete derivations of \(H_1; s_1 \rightarrow^* H_2; s_2 \) are not unique.
Judgements and Inference Rules

Judgements and inference rules are versatile PL notation.

Could have defined program semantics using a judgement and inference rule:

\[
\begin{align*}
 s &\rightarrow^* c \\
 \cdot; s &\rightarrow^* H; \text{skip} \quad H \odot \text{ans} \rightsquigarrow c \\
 \hline \\
 s &\rightarrow^* c
\end{align*}
\]
Review: **IMP** abstract syntax (programs and heaps)

\[
\begin{align*}
 s & ::= \ x \ ::= \ e \ | \ \text{skip} \ | \ s \ ; \ s \ | \ \text{if} \ e \ s \ s \ | \ \text{while} \ e \ s \\
 e & ::= \ c \ | \ x \ | \ e + e \ | \ e \ast e \\
 (c & \in \ \{\ldots, -2, -1, 0, 1, 2, \ldots\} \}) \\
 (x & \in \ \{x_1, x_2, \ldots, y_1, y_2, \ldots, z_1, z_2, \ldots, \ldots\} \}) \\

\end{align*}
\]

\[
\begin{align*}
 H & ::= \ \cdot \ | \ H, x \mapsto c
\end{align*}
\]
Review: **IMP** judgement for heap lookup

\[H \odot x \leadsto c \]

EMPTY

\[\cdot \odot x \leadsto 0 \]

HIT

\[H', x \mapsto c \odot x \leadsto c \]

MISS

\[x \neq y' \quad H' \odot x \leadsto c \]

\[H', y' \mapsto c' \odot x \leadsto c \]
Review: **IMP** operational semantics for expressions (big-step)

\[H; e \Downarrow c \]

CONST

\[
\frac{
H; c \Downarrow c
}{
H; c \Downarrow c
}
\]

VAR

\[
\frac{
H \oplus x \rightsquigarrow c
}{
H; x \Downarrow c
}
\]

ADD

\[
\frac{
H; e_1 \Downarrow c_1 \quad H; e_2 \Downarrow c_2
}{
H; e_1 + e_2 \Downarrow c_1 + c_2
}
\]

MULT

\[
\frac{
H; e_1 \Downarrow c_1 \quad H; e_2 \Downarrow c_2
}{
H; e_1 \ast e_2 \Downarrow c_1 \ast c_2
}\]
Review: **IMP** operational semantics for statements (small-step)

\[H_1; s_1 \rightarrow H_2; s_2 \]

ASSIGN

\[\frac{H; e \downarrow c}{H; x := e \rightarrow H, x \mapsto c; \text{skip}} \]

WHILE

\[\frac{H; \text{while } e \ s \rightarrow}{H; \text{if } e (s \ ; \text{while } e \ s) \text{ skip}} \]

SEQ_SKIP

\[\frac{H; \text{skip } \ ; \ s \rightarrow H; s}{H; s_1 \rightarrow H'; s'_1} \]

\[\frac{H; s_1 \ ; \ s_2 \rightarrow H'; s'_1 \ ; \ s_2}{H; \text{if } e \ s_1 \ s_2 \rightarrow H; s_1} \]

IF_TRUE

\[\frac{H; e \downarrow c, c > 0}{H; \text{if } e \ s_1 \ s_2 \rightarrow H; s_1} \]

IF_FALSE

\[\frac{H; e \downarrow c, c \leq 0}{H; \text{if } e \ s_1 \ s_2 \rightarrow H; s_2} \]
We can prove properties about all expressions (i.e., about IMP):

- **Progress:**

 For all H and e, there exists c such that $H;e \Downarrow c$.

- **Determinacy:**

 For all H, e, c_1, and c_2,

 if $H;e \Downarrow c_1$ and $H;e \Downarrow c_2$, then $c_1 = c_2$.

We rigged it that way...

- What would division, undefined variables, or `rand()` do?

Proofs are by induction on the the structure of the expression e.

- Proofs require lemmas for “progress” and “determinacy” of heaps.
- Details in a few lectures and Homework 3.
Preview: Establishing properties about a program

We can prove a property about a terminating program by “running” it.

Example: Our last program terminates with \(x \) holding 0.
We can prove a property about a terminating program by “running” it.

Example: Our last program terminates with \(x \) holding 0.

We can prove that a program \(s \) diverges:

- for all \(H \) and \(n \), \(\cdot; s \rightarrow^n H; \text{skip} \) cannot be derived.

Example: \texttt{while 1 skip}
Preview: Establishing properties about a program

We can prove a property about a terminating program by “running” it.

Example: Our last program terminates with \(x \) holding 0.

We can prove that a program \(s \) diverges:

- for all \(H \) and \(n, \) \(\cdot; s \rightarrow^n H; \text{skip} \) cannot be derived.

Example: \(\text{while 1 skip} \)

Proof is by induction on \(n \) with a stronger induction hypothesis:
If we can derive \(\cdot; \text{while 1 skip} \rightarrow^n \cdot; s' \)
then \(s' \) is \(\text{while 1 skip} \)
or \(s' \) is \(\text{if 1 (skip ; while 1 skip) skip} \)
or \(s' \) is \(\text{skip ; while 1 skip} \).

Details in a few lectures.
Establishing properties about all programs

We can prove properties about all programs (i.e., about IMP):

- **Progress:**

 For all H and s, there exists H' and s' such that $H; s \rightarrow H'; s'$.

- **Determinacy:**

 For all H, s, H'_1, s'_1, H'_2, and s'_2, if $H; s \rightarrow H'_1; s'_1$ and $H; s \rightarrow H'_2; s'_2$, then $H'_1 = H'_2$ and $s'_1 = s'_2$.
Establishing properties about all programs

We can prove properties about all programs (i.e., about **IMP**):

- **Progress:**

 For all \(H \) and \(s \), there exists \(H' \) and \(s' \) such that \(H; s \rightarrow H'; s' \).

- **Determinacy:**

 For all \(H, s, H'_1, s'_1, H'_2, \) and \(s'_2 \), if \(H; s \rightarrow H'_1; s'_1 \) and \(H; s \rightarrow H'_2; s'_2 \), then \(H'_1 = H'_2 \) and \(s'_1 = s'_2 \).

One of these properties is not true...
Establishing properties about all programs

We can prove properties about all programs (i.e., about \textbf{IMP}):

- **Progress:**
 For all H and s, there exists H' and s' such that $H; s \rightarrow H'; s'$.

- **Determinacy:**
 For all H, s, H'_1, s'_1, H'_2, and s'_2, if $H; s \rightarrow H'_1; s'_1$ and $H; s \rightarrow H'_2; s'_2$, then $H'_1 = H'_2$ and $s'_1 = s'_2$.

One of these properties is not true...
Establishing properties about all programs

We can prove properties about all programs (satisfying a property).
Establishing properties about all programs

We can prove properties about all programs (satisfying a property).

Example: If H and s have no negative constants and $H; s \rightarrow H'; s'$, then H' and s' have no negative constants.
Establishing properties about all programs

We can prove properties about all programs (satisfying a property).

Example: If H and s have no negative constants and $H; s \rightarrow H'; s'$, then H' and s' have no negative constants.

Proof is by structural induction on the derivation $H; s \rightarrow H'; s'$. Details next time.
Establishing properties about all programs

We can prove properties about all programs (satisfying a property).

Example: If H and s have no negative constants and $H; s \rightarrow H'; s'$, then H' and s' have no negative constants.

Proof is by structural induction on the derivation $H; s \rightarrow H'; s'$. Details next time.

Example: If for all H, we know s_1 and s_2 terminate, then for all H, we know $s_1 ; s_2$ terminates.
Establishing properties about all programs

We can prove properties about all programs (satisfying a property).

Example: If \(H \) and \(s \) have no negative constants and \(H; s \rightarrow H'; s' \), then \(H' \) and \(s' \) have no negative constants.

Proof is by structural induction on the derivation \(H; s \rightarrow H'; s' \). Details next time.

Example: If for all \(H \), we know \(s_1 \) and \(s_2 \) terminate, then for all \(H \), we know \(s_1 \); \(s_2 \) terminates.

Proof is almost direct (but needs a lemma).

\[
H; s_1 \; ; s_2 \rightarrow^* H'; \text{skip} \; ; s_2 \rightarrow H'; s_2 \rightarrow^* H''; \text{skip}
\]