
1

Topic 2:
The Security Analysis

Process
1. Security analysis as a formal process
2. Security policies
3. Risk analysis, measurement and management
4. Software security measurement
5. Software testing
Notes supplied by David Smith (GeorgiaTech), Harry Erwin (University of Sunderland) and

Software Engineering Institute, Carnegie-Mellon University are used

Security Analysis is a Formal
Process.

1. Start by identifying the system and items to be
protected.

2. Identify the security policies that must be enforced.
3. Define the trust relationships to be supported.
4. Perform a risk analysis to identify the threats.
5. Establish the assumptions of secure operation.
6. List the security objectives you must implement.
7. Define the resulting security functions to be

provided.
8. Provide the detail, implement, and test.

What are the Items to be
Protected?

• If you try to protect everything, you protect
nothing.

• Can include data, equipment, reputation,
and resources.

• Take into account time. Any security can be
broken with enough time and resources.
Provide alarms and appropriate responses.

Security Policies

• This is where one should start
• Be realistic.
• If you can’t secure what you need to secure,

perhaps you should reconsider building the
system.

Trust Relationships

• You must understand trust to be able to
secure a system and have the system be
usable.

• Trust should influence your security
architecture.

Risk Analysis

Be realistic.
• Hackers are creative—don’t reject

vulnerabilities out of hand. “Security by
Obscurity” is not a solution.

• Don’t try to protect everything, but don’t
leave obvious holes.

2

Assumptions of Secure Operation

• Should be associated with individual
security objectives to help you select your
security requirements.

The Security Mapping Process

CCTool Manual

Security Analysis Relationships

CCTool Manual

Security Objectives Result in
Security Requirements

CCTool Manual

Security Objectives

• “The results of the analysis of the security
environment can then be used to state the
security objectives that counter the
identified threats and address identified
organizational security policies and
assumptions. The security objectives should
be consistent with the stated operational aim
or product purpose of the system, and any
knowledge about its physical environment.”

Intent of the Objectives

• “The intent of determining security
objectives is to address all of the security
concerns and to declare which security
aspects are either addressed directly by the
system or by its environment. This
categorization is based on a process
incorporating engineering judgment,
security policy, economic factors and risk
acceptance decisions.”

3

Sources of Security Functional
Requirements

• “The CC and the associated security functional
requirements are not meant to be a definitive
answer to all the problems of IT security. Rather,
the CC offers a set of well understood security
functional requirements that can be used to create
trusted products or systems reflecting the needs of
the market. These security functional requirements
are presented as the current state of the art in
requirements specification and evaluation.”

How do You Use the Security
Requirements?

• The functional requirements describe what your
security solution must do to allow you to operate
safely. These can be compared to the functionality
provided by vendor software and hardware.

• The assurance requirements describe what
development practices and testing the vendor must
follow to assure the users that the functionality
provided actually works.

Role of Security Testing

• “Security requirements generally include both
requirements for the presence of desired behavior and
requirements for the absence of undesired behavior. It is
normally possible to demonstrate, by use or testing, the
presence of the desired behavior. It is not always possible
to perform a conclusive demonstration of absence of
undesired behavior. Testing, design review, and
implementation review contribute significantly to reducing
the risk that such undesired behavior is present.”

Risk Measurement and
Management

• Assessment
– Identification
– Analysis
– Prioritization

• Control
– Planning
– Resolution
– Monitoring

What is a risk and why do I care?

• A potential problem
• Risk has 2 parts:

– Probability (Likelihood)
– Consequence (Loss)

• Risk results in Exposure : Frequently
referred to as L2

I am used to thinking 3 or 4 months in advance about what I must do, and
calculate on the worst. If I take so many precautions it is because it is my
custom to leave nothing to chance. -- Napolean I 1808

Types of Risk

• Project
– Operational
– Organizational
– Contractual

• Process
– Management
– Technical

• Product

4

We can’t do everything

Risk

C
os

t

Cost of resolution
Risk
Exposure

Sometimes we need
to do ROI or
CBA to determine
whether risk measures
are cost-effective

Characteristics of Good Risk Mgt

• Proactive
• Integrated
• Systematic (20/80 rule – ID::Control)
• Disciplined (P2I2)

– People
– Process
– Infrastructure
– Implementation

Levels of Risk Management

• Crisis Management (Fire Fighting)
• Fix on Failure
• Risk Mitigation
• Risk Prevention
• Elimination of root causes

Risk Identification

• Conduct a risk assessment. (Formal,
interviews, facilitated meetings)

• Identify risk systematically. (Checklists)
• Define risk attributes (L2) (Qualitative).
• Document identified risk.
• Communicate identified risk.

Risk Analysis

• Group similar and related risks
• Determine risk drivers
• Determine source of risk (root cause)
• Use risk analysis techniques and tools
• Estimate risk exposure (Quantitative)
• Evaluate risk against criteria (Severity, Time)
• Rank risks relative to other risks (Top-n)

Risk Analysis Techniques
• Causal Analysis (Cause-Effect)
• Decision Analysis

– Decision Tree
– Influence Diagram

• Gap Analysis
– Magnitude
– Radar Charts

• Pareto Analysis
• Sensitivity Analysis
• Technical Models, Prototypes
• COCOMO II

http://sunset.usc.edu/research/COCOMOII/index.html

5

Top-n List Format

HighIncreasing travel budget
for additional site
reviews. Setting up
network access
capability.

292Off-site SW
development

HighCapturing requirements
into requirements DB
tool. Ensuring
availability of adequate
personnel resources

221High SW
productivity
rate

Risk
Rating

Action Plan StatusWeeks
on Top
10

Previou
s
Priority

Current
Priority

RISK

Risk Planning

• Develop scenarios for high-severity risks
• Develop resolution alternatives
• Select resolution approach
• Develop risk action plan
• Establish thresholds for early warning

– When should I start getting worried?

Risk Scenario

• Think about risk as if it has occurred
• State the sequence of events
• List the events and conditions that would

precede risk occurrence.

Risk Resolution Alternatives

• Acceptance
• Avoidance (Eliminate)
• Protection (Redundancy)
• Reduction (Mitigation, Prevention, Anticipation)
• Research (Need more info)
• Reserves (Slush fund, bank, pad)
• Transfer (shift to someone else)

Do Risk resolution for home PC against lightning.

Selection Criteria

• Picking a cost effective strategy
– Risk Leverage (cost-benefit) =

RE(before) – RE(after) / Resolution Cost

– ROI = ΣSavings/Cost
• Diversification

– Don’t put all the eggs in one basket.

Risk Tracking

• Monitor risk scenarios
• Compare thresholds to status
• Provide notification for triggers
• Report risk measures and metrics

6

Risk Resolution

• Respond to notification of triggering event
• Execute risk action plan
• Report progress against plan
• Correct for deviations from plan

Risk is Risky Business

Risk is inherent in the development of any large software system. A common
approach to risk is to simply ignore it.

Those who choose to minimize or avoid risk, as opposed to manage it,
are setting a course for obsolescence.

If you don’t actively attack risks, they will actively attack you.

Whatever can go wrong will go wrong, and at the worst possible time.

If you have brainstormed 4 ways that your project can fail, a new 5th way will
present itself.

The Software Security
Management Challenge

Standard
Process

Standard
Process TailorTailor Project

Plan
Project

Plan ImplementImplement ProductProduct

Management
Action

Management
Action

?
What to

Change?

What to
Measure?

Measurements

• Product Metrics
– Work Products

• Management Metrics
– Work completion

• Process Metrics
– Work Quality

Product Metrics

Determine the progress of the software
development

• Requirements Volatility

• Requirements Quality

• Comparing Actuals to Estimates
– Requirements count

– Resource Usage

– Code size (Function Points)

– Tests complete

Management Metrics
• Comparing Actuals to the Plan

– Schedule Performance Index (SPI):
Budgeted Cost of Work Performed (BCWP)
Budgeted Cost of Work Scheduled (BCWS)

– Cost Performance Index (CPI):
Actual Cost of Work Performed (ACWP)
Budgeted Cost of Work Scheduled (BCWS)

• Value of Indices
– Management visibility into overall performance

• Hazards of Indices
– Not a good indicator of emerging problems
– Large, long-term program can be in significant trouble before

indicators show deviation (e.g. batting average)

7

Metrics Overview
I. Development Progress

1 Requirements Allocated
2 Components Designed
3 Components Implemented
4 Components Integrated
5 Requirements Tested
6 Paths Tested
7 Test Cases Completed

II. Stability
1 Requirements Volatility
2 Problem Report Trends
3 Problem Report Aging
4 Resource Availability
5 Defect Profile
6 Rework Effort

III. Personnel
1 Staff Level
2 Staff Turnover

IV. Product Size
1 Number of Components
2 Function Points
3 Lines of Code
4 Words of Memory

V. Resource Consumption
1 CPU Utilization
2 CPU Throughput
3 I/O Utilization
4 I/O Throughput
5 Memory Utilization
6 Storage Utilization

VI. Cost & Schedule
1 Progress
2 SPI
3 CPI

MEASUREMENT SPECIFICATION

• Data Items - for each measure, identify all
– data elements, and
– levels of collection and reporting

• Data Types - plans, changes to plans, and actuals for
each measure should be collected, reported, and
updated regularly.

• Measurement Definitions - for each measure, identify
– definitions and methodologies that will be used
– differences between the estimation methodologies and the

way the actuals are counted, and
– “exit” criteria for counting actuals.

• Data Dates - identify both the date that the data were
collected and the date that they are reported.

MEASUREMENT
SPECIFICATION (cont)

• Collection Timing - on a periodic, not event driven
basis.

• Measurement Scope - If more than one organization
is involved in SW development,
– collect from each and identify the source
– unify definitions for the same measures

• Program Phase - The measures should generally be
applied to all life cycle phases, including program
planning, development, and software support.

• Reporting Mechanisms - The mechanisms for
reporting data to management and the customer

Testing

• Background

• Dynamic and Static Testing

• Testing from the Bottom Up

• Test Plans

• White and Black Box Testing

• Special Testing - Real-Time Systems

Testing Principles

• All tests should be traceable to customer requirements
• Tests should be planned long before testing begins
• The Pareto Principle applies to software testing
• Testing should begin “in the small” and progress

towards testing “in the large”
• Exhaustive testing is not possible
• Testing should be conducted by a third party

Verification:“Are we building the product right?”
Validation: “Are we building the right product?”

The goal of testing is not to prove that software is
error-free, but rather just to find what errors we can
The goal of testing is not to prove that software is

error-free, but rather just to find what errors we can
Dynamic Testing

Run Program

Modify inputs

Observe Outputs

Identify Errors

Correct the
Software

8

Static Testing
• Program

Inspections
• Analysis
• Formal Verification

• Can reduce cost
• Unlikely to discover difficult errors:

requirements errors
errors of omission

• Only useful on small systems or unit testing

Testing Stages

Unit Test

Module Test

Subsystem Test

Integration Test

Acceptance Test

Regression Test

Unit Test
The FIRST and MOST EXHAUSTIVE Test

• Nothing else will work right unless this is done well

• Individual components tested in isolation
– Procedure,

– function,

– object

• Stand-alone entities

• Check that component meets spec

Module Test

• Modules identified during system design

• Combine interdependent components
(initially, tested units)

• Test interaction of related components

• Modules are stand-alone, entities

Subsystem Test

• Combine related modules
• Rigorously exercise

interfaces
• Detect interface mismatches

Integration Test

• Combine (potentially unrelated) subsystems
• Find unanticipated interactions between

components of subsystems
• Validate the overall functionality of the system

9

Acceptance Test

• Test the program with real data
(but not in the field)

• Handles both verification and
validation

• Can detect errors in the requirements

• Tests performance and functionality

• Stages:
– Stress testing

– Alpha Testing

Stress Testing

• Place an unnatural load on the
system

• Test performance, system limits

• Stress until program breaks down

Alpha Testing

• First stage of Acceptance testing
• System developer tests in the presence

of the customer
• Real data
• Developer and customer reach an

agreement about adequacy of the
system

• Delivered product deemed acceptable
in quality and functionality

Beta Testing

• System is distributed to real customer site
• Testing under actual working conditions

– Subset of the real users
– Training program also tested

• Somewhat controlled environment
• Customer agrees to report problems to

developers

Regression Testing
• Corrections to errors found may introduce new

errors
• Can’t assume that unrelated features will not be

affected after changes
• Can’t just re-test modules that have been modified
• Could Test entire system after changes

– maintain full test suite
– costly, impractical

• Need to partition system design to limit
propagation of error effects

• Develop test subsets which stand alone

Bottom-Up Testing

• Modules at the lowest level of the
hierarchy are tested first

• Parent modules are replaced by drivers
• Easier to create test cases, real input
• Can determine performance
• No demonstrable program exists until all

modules have been developed

10

Top-Down Testing (Prototyping)

• Start at subsystem level - replace
modules with stubs

• Modules can be tested as soon as they
are coded

• Top-down detects design errors early
• A working system exists at all times
• Test output is artificial

Test Plans
• Testing can consume half of the overall

development costs

• Test plans describe the testing process

• Components of a test plan:
– Major phases of testing

– Traceability to requirements

– Schedule and resource allocation

– Relationship between test plan and other documents

– Test auditing

Test Cases

• Not the same thing as test data

• Test Cases:

– input and output specifications

– statement of the function under test

– mapping to requirements

Test Cases

Example: A program that determines
whether a triangle is isosceles:

• function Is Isosceles
(Side 1, Side 2, Side 3: in integer)

• return boolean;
3

2

3

Test Cases
How many test cases are there?
• A triangle that is isosoles (2,2,3)
• Reorder the equivalent sides (2,3,2)

(3,2,2)
• Triangle that is equilateral (2,2,2)
• Triangle that is not isosoles (1,2,3,)
• Reorder numbers (2,3,1)
• Boundary conditions (1,2,0)
• Reorder boundaries (1,0,2) (0,1,2)
• Multiple boundaries (0,0,1)
• All boundaries (0,0,0)
• Large numbers (6500001, 4,

35467843)

Black-Box Testing
The tester does not have the code for the routine
• Tester only has a functional description of the

routine
• Test inputs determined by requirements
• Techniques:

– Graph-based
• Data/Transaction Flow Modeling
• Finite State Modeling
• Timing Modeling

– Equivalence Partitioning
– Boundary Value Analysis
– Comparison Testing (separate teams)

11

Equivalence Partitioning
Determine which classes of input data have common

properties
• Philosophy:

– If the program does not display erroneous output for one
member of a class, then all members of that class should
be “safe”.

• Example:
– Input spec states the range of an input is a 5-digit number
– Equivalence classes:

• Values less than 10,000
• Values between 10,000 - 99,999
• Values greater than 99,999

White-Box Testing

• Tester has knowledge and access to the
source code of the routine

• Does not need to understand the program as
a whole, only the module being tested

• Hard to get clues about which test inputs
best exercise the program

• Techniques: Control Structure Testing
– Basis Path Testing
– Condition Testing
– Data Flow Testing

Basis Path Testing
• Derive a program flow graph
• Devise test cases that exercise each path of control

flow
• Each decision, each loop, each statement is

exercised
• Independent path: one which traverses at least one

new edge in the flow graph.
• Maximum number of tests required for all

conditions is the Cyclomatic complexity (McCabe,
1976)
– Cyclomatic complexity (G) =Number of edges - Number

of nodes + 2

Real-Time Systems Testing
Cannot use intrusive methods for testing

– printing, breakpoints etc.
• Reliability requirements are usually very

high
• Depend on timing constraints
• Often interrupt driven
• Much interaction between processes
• Test each component individually in

isolation
• Test threads - system reaction to an event
• Introduce multiple events
• Use emulators and simulators for devices

GUI Testing• Windows
– window behavior
– titles
– data content
– regeneration
– highlighting when active

• Menus
– menu bar related to context
– addressability
– functionality
– help capability

• Data Entry
– user comprehension
– mechanical operation
– data validation

Testability

• Operability: “The better it works, the more
efficiently it can be tested”

• Observability: “What you see is what you test”
• Controllability: “The better we can control the

software, the more the testing can be automated
and optimized”

• Decomposability: “By controlling the scope of testing,
we can more quickly isolate problems and perform
smarter re-testing”

• Simplicity: “The less there is to test, the more
quickly we can test it”

A good software engineer designs a computer program, a
system, or a product with testability in mind

A good software engineer designs a computer program, a
system, or a product with testability in mind

12

Test Plan Design
1.1
1.1.1
1.1.2
1.1.3
1.1.4
1.2
1.2.1
1.2.2
1.2.3
2.1
2.1.1
2.1.2
2.1.2.1
2.1.2.2
2.1.2.2.1
2.1.2.2.2
2.1.2.2.3
3.1
3.1.1
3.1.2

Test Case 5
Description
BTest Case 4

Description
B Test Case 3

Description
B Test Case 2

Description
Bl Test Case 1

Description
Blah blah blah
Procedure
• Blah blah blah
• More blahs

Test

Report

Document Summary
1 Introduction

– copy and paste directly from requirements specification
2 Requirements Identification

– copy and paste direct from requirements specification
verification section

3 Test Plan / Procedures MORE LATER
– overall discussion of testing strategy – the idea is to develop as

small a number of tests which cover all the requirements
4 Test Results

– table listing test scenarios, software version, results observed,
signature of observer

5 Traceability Matrix
– copy and paste requirements list from section 2
– add column to show which scenario / event from the above list

demonstrated each requirement

3 Test Plan /
Procedures

• overall discussion of testing strategy
– the idea is to develop as small a number of tests

which cover all the requirements

• List of cases (1 is unusual but OK)
– Case: [aka Scenario] single setup and sequence

of events which build upon the results of the
previous event

3.<n> Case:
<name>

• Overall case (scenario) description
3.<n>.1 Event Description

• hardware, software and people required to run this test
3.<n>.1.1 Input Data

how to stimulate the required behavior
3.<n>.1.2 Events to Observe

what should happen, how to observe it
3.<n>.2 Event Description

• hardware, software and people required to run this test
3.<n>.2.1 Input Data

how to stimulate the required behavior
3.<n>.2.2 Events to Observe

what should happen, how to observe it
3.<n>.3 etc

Open Problems
• Despite the emergence of a formal approach to the

definition of security requirements, computer security has
gotten worse, not better over the last 30 years. (Karger and
Schell, 1974 and 2002)

• K&S note that current secure systems are less secure than
Multics, and “Multics, with its security enhancements, was
only deemed suitable for processing in a relatively benign
‘closed’ environment.”

• What they see missing is a verifiable security kernel to
block professional hacker attacks using malicious software
trapdoors. This is a currently emerging threat.

