Autoassociative
! Neural Network

Presented by:
Yevgeniy Gershteyn
Larisa Perman

04/17/2003

Definition

= Autoassociative neural networks (AANN) are feedforward
networks whose input and output vectors are identical.

= The process of training is called storing the vectors (binary
or bipolar).

= A stored vector can be retrieved from distorted or noisy
input, if the input is sufficiently similar to it.

= AANNSs are typically used for tasks involving pattern
completion.

= The performance of the net is derived from its ability to
reproduce a stored pattern from noisy input.

= AANNSs are special kinds of neural networks that are used
to simulate (and explore) associative processes.

= Association in these types of neural networks is achieved
through the interaction of a set of simple processing
elements (called units), which are connected through
weighted connections.

Architecture

Autoassociative neural net

= Linear (feedforward) AANN

xk II:> M, ivk

Types of AANN (cont)

= Recurrent AANN

VY ey B VI e —

vk

:

Bottleneck Feature

= The key feature of such networks is the data compression
performed by the bottleneck layer; this provides the
topology with very powerful properties of feature
extraction.

= The network consists of an input layer followed by a non-
linear hidden layer (the bottleneck layer), a second non-
linear hidden layer and finally the output layer of the same
dimension as the input.

AANN Example

= AANN is a five-layer perceptron feedforward network which
can be viewed as two independent three-layer neural
networks connected in series.

= The first network mixes and compresses the m redundant
measurements into a smaller number of characteristic
variables which should ideally represent the essential
characteristics of the process.

= The second network works in the opposite way and uses
the compressed information to regenerate the original n
redundant measurements.

Input Mapping Bottle-neck De-Mapping Output
Layer layer layer layer Layer

Algorithm

= For mutually orthogonal vectors, the Hebb rule can be used
for setting the weights because the input and output
vectors are perfectly correlated, component by component
(Same number of output units as input units)
= General rules:
= When unit A and B are simultaneously correlated, increase the
strength of the connection between them.
= When unit A and B are counter-correlated, decrease the strength of
the connection between them.

= Hebbian Learning was introduced by Dr. Reznik in topic 6.

Algorithm (cont)

= Step 0.

= Initialize all weights, i=1,...,mj=1,...,n w;=0;
= Step 1.

= For each vector to be stored, do Steps 2 — 4:
= Step 2.

= Set activation for each input unit, i=1,...,n: x =s;;
= Step 3.

= Set activation for each output unit, j=1,...,n: y; =s;;
= Step 4.

= Adjust the weights,i=1,...,n;j=1,...,n:

w; (new) = w;; (old) + x;y; .

= In practice usually do not use the algorithmic form of Hebb
learning, and the weights usually set from the formula:

P
W= p; sT(p) s(p)

Where:
W — weighted matrix
S(p) — P distinct n-dimensional prototype patterns
T — learning step in time t (from Hebbian learning)

= AANN can be used to determine whether an input vector is
“known"” or “unknown”.

= AANN recognizes a “known” vector by producing a pattern
of activation on the output unit of the net that is the same
as one of the vectors stored in it.

= The application procedure for bipolar inputs and
activations:

= Step 0.

= Set the weights using Hebb rule (outer product)

Application (cont)

= Step 1.
= For each testing input vector, do Steps 2 — 4.
= Step 2.
= Set activations of the input units equal to the input vector.
= Step 3.
= Compute net input to each output unit, j=1,...,n:
y_in; = Z X; Wi
= Step 4.
= Apply activation function =1, ..., n):
1 if y_inj> 0;
Yi=fOn) =1y ipy i <o,

Example 1
= Store one pattern (vector) in AANN and then recognize it.
= Step 0.
= Vectors = (1, 1, 1, -1) is stored with the weight matrix:

111 -1

111 -1

W= 1114

-1-1-1 1
= Step 1.

= For each testing input vector, do Steps 2 — 4.

= Step 2.

« x=(1,1,1,-1).
= Step 3.

« y_in=(4,4,4,-4).
= Step 4.

= y=1f(4,44-49=(111,-1).
= S0, the input vector is recognized as a “known” since the
response vector y is the same as the stored vector.

(11 1! 1l -1)' W= (4I 4l 4l -4) > (11 1l 1l -1)

u Testing an AANN: one "mistake” in the input vector.

= Each vector x is formed from the original stored vector s
(see Example 1) with a “mistake” in one component.

(-1,1,1,-1)*W=(2,22,-2)>(1,1,1,-1)
1,-1,1,-1)*W=(2,22,-2)>(1,1,1,-1)
1,1,-1,-1)*W=(2,2,2,-2)>(1,1,1,-1)
1,1,1,1)*W=(2,2,2,-2)>(,1,1,-1)
u Testing an AANN: two "mistakes” in the input vector.
(-1,-1,1,-1)*W =(0, 0, 0, 0)
The net does not recognize this input vector

u Testing an AANN: two "missing” entries in the input vector.

= Each vector x is formed from the original stored vector s
(see Example 1) with two “missing” data components.

0,0,1,-1)*W=(2,22,-2)>(1,1,1,-1)
0,1,0,-1)*W=(2,2,2,-2)>(1,1,1,-1)
0,1,1,00*W=(2,22,-2)>(1,1,1,-1)
(1,0,0,-1)*W=(2,2,2,-2)>(1,1,1,-1)
(1,0,1,00*W=(2,22,-2)>(1,1,1,-1)
(1,1,0,00)*W=(2,22,-2)>(1,1,1,-1)

u An AANN with no self-connections: zeroing-out the
diagonal.

011 -1

W.=| 101

0 110 -1

1-1-1 0

= Each vector x is formed from the original stored vector s
(see Example 1) with two “mistakes” in first and second
components.

(-1,-1,1,-1) *Wy=(-1,1,-1, 1)
The net still does not recognize this input vector

= If the weight matrix W, is used for the case of “missing”
components in input data, the net recognizes each of these
input vectors whose input components were zero.

0,0,1,-1)*Wy=(2,2,1,-1)>(1,1,1,-1)
0,1,0,-1)*W;=(2,1,2,-1)> (1, 1,1,-1)
0,1,1,00*W;=(2,1,1,-2)> (1,1, 1,-1)
(1,0,0,-1) *Wy,=(1,2,2,-1)>(1,1,1,-1)
(1,0,1,00*W,=(1,2,1,-2)>(1,1,1,-1)
(1,1,0,0)*W,=(1,1,2,-2)>(1,1,1,-1)

= One of the main features of the AANN is the number of
patterns or pattern pairs that can be stored before the net
begins to forget.

= The number of vectors that can be stored in the net is
called the capacity of the net.

= The capacity of the AANN depends on the number of
components the stored vectors have and the relationships
among the stored vectors; more vectors can be stored if
they are mutually orthogonal.

= Generally, n — 1 mutually orthogonal bipolar vectors, each
with 17 components, can be stored using the sum of the
outer product weight matrices (zero in diagonal).

= Pattern Recognition
= Voice Recognition
= Bioinformatics

= Signal Validation

= Net Clustering

= etc.

= AANN is trained on all 3000 coded messages (from over 30
newsgroups into 46 categories) and then used to construct
typical messages under certain specified conditions.

= The recoding resulted in 149 binary features in the new
database.

= Applying an AANN to 3000 Messages: Since the data
consisted of 149 features, each taking a value of either "0"
or "1" after processing, the network has 149 binary units.
This leads to 149*%149=22,201 weights and 149 thresholds
to adjust during training (1 — on, 0 — off).

Example: Clustering on the Net

= Training a network with over 20,000 weights.
= Training this neural network obviously requires millions of
computations.
= The network consists of 22,350 parameters
= 22,201 weights
= 149 threshold values
= To adjust and to update each of them, 149 activations have to be
computed, each of them requiring again 150 weighted summations.
= This has to be done for each of the 3,000 patterns in the database, which
leads to a computation of over 65 million weighted summations (or
connections) plus roughly the same amount of compare and update
operations per epoch.
= Almost 100 hours of CPU-time were spent before the error-rate of the
network started to settle down after five days.

& Example: Clustering on the Net

#misses

i

:
3
3
N

20.0nn

[0
&
o
=
=

[y
&
o
=
=

b+

$ References

» L.Fausett, Fundamentals of Neural Networks, Prentice Hall,
1994

» Auto-associative neural networks,
http://gbab.aber.ac.uk/roy/koho/aaanns.htm

= M. Berthold, F. Sudweeks, S. Newton, R. Coyne
Clustering on the Nets: Applying an Autoassociative
Neural Network to Computer-Mediated Discussions,
http://www.ascusc.org/jcmc/vol2/issue4/berthold.html

