Topic 3: Intelligent Agents

Today's Reading: Chapter 2, Russell and Norvig or/and Luger 1.1.4

Intelligent Agent (IA) Design
- Shared requirements, characteristics of IAs
- Methodologies
 - Software agents
 - Reactivity vs. state
 - Knowledge, inference, and uncertainty

Intelligent Agent Frameworks
- Reactive
- With state
- Goal-based
- Utility-based

How Agents Should Act

Rational Agent: Definition
- Informal: "does the right thing, given what it believes from what it perceives"
- What is "the right thing"?
 - First approximation: action that maximizes success of agent
 - Limitations to this definition?
- Issues to be addressed now
 - How to evaluate success
 - When to evaluate success
- Issues to be addressed later in this course
 - Uncertainty (in environment, in actions)
 - How to express beliefs, knowledge

Rational Agents

"Doing the Right Thing"
- Committing actions
 - Limited to set of effectors
 - In context of what agent knows
- Specification (cf. software specification)
 - Preconditions, postconditions of operators
 - Caveat: not always perfectly known (for given environment)
 - Agent may also have limited knowledge of specification

Intelligent Agents: Overview

Agent: Definition
- Any entity that perceives its environment through sensors and acts upon that environment through effectors
- Examples (class discussion): human, robotic, software agents

Perception
- Signal from environment
- May exceed sensory capacity

Sensors
- Acquires percepts
- Possible limitations

Action
- Attempts to affect environment
- Usually exceeds effector capacity

Effectors
- Transmits actions
- Possible limitations

Rational Agents

Agent Capabilities: Requirements
- Choice: select actions (and carry them out)
- Knowledge: represent knowledge about environment
- Perception: capability to sense environment
- Criterion: performance measure to define degree of success

Possible Additional Capabilities
- Memory (internal model of state of the world)
- Knowledge about effectors, reasoning process (reflective reasoning)
Measuring Performance

Performance Measure: How to Determine Degree of Success
- Definition: criteria that determine how successful agent is
- Clearly, varies over
 - Agents
 - Environments
- Possible measures?
 - Subjective (agent may not have capability to give accurate answer!)
 - Objective: outside observation

Measuring Performance

- Example: web crawling agent
 - Number of hits
 - Number of relevant hits
 - Ratio of relevant hits to pages explored, resources expended
 - Caveat: “you get what you ask for” (issues: redundancy, etc.)

When to Evaluate Success
- Depends on objectives (short-term efficiency, consistency, etc.)
- Is task episodic? Are there milestones? Reinforcements? (e.g., games)

Knowledge in Agents

Rationality versus Omniscience
-Nota Bene (NB): not the same
- Distinction
 - Omniscience: knowing actual outcome of all actions
 - Rationality: knowing plausible outcome of all actions
 - Example: is crossing the street to greet a friend too risky?
- Key question in AI
 - What is a plausible outcome?
 - Especially important in knowledge-based expert systems
 - Of practical importance in planning, machine learning

Knowledge in Agents

- Related questions
 - How can an agent make rational decisions given beliefs about outcomes of actions?
 - Specifically, what does it mean (algorithmically) to “choose the best”?
- Limitations of Rationality
 - Based only on what agent can perceive and do
 - Based on what is “likely” to be right, not what “turns out” to be right

What Is Rational?

- Criteria
 - Determines what is rational at any given time
 - Varies with agent, environment, situation

Performance Measure
- Specified by outside observer or evaluator
- Applied (consistently) to (one or more) IAs in given environment

Percept Sequence
- Definition: entire history of percepts gathered by agent
- NB: may or may not be retained fully by agent (issue: state and memory)

What Is Rational?

- Agent Knowledge
 - Of environment – “required”
 - Of self (reflexive reasoning)
- Feasible Action
 - What can be performed
 - What agent believes it can attempt?
Ideal Rationality

- Ideal Rational Agent
 - Given: any possible percept sequence
 - Do: ideal rational behavior
 - Whatever action is expected to maximize performance measure
 - NB: expectation – informal sense (for now); mathematical foundation soon
 - Basis for action
 - Evidence provided by percept sequence
 - Built-in knowledge possessed by the agent

Ideal Rationality

- Ideal Mapping from Percepts to Actions
 - Figure 2.2, R&N
 - Mapping p: percept sequence \(\rightarrow \) action
 - Representing p as list of pairs: infinite (unless explicitly bounded)
 - Using p: specifies ideal mapping from percepts to actions (i.e., ideal agent)
 - Finding explicit p: in principle, could use trial and error
 - Other (implicit) representations may be easier to acquire!

Autonomy

- Built-In Knowledge
 - What if agent ignores percepts?
 - Possibility
 - All actions based on agent's own knowledge
 - Agent said to lack autonomy
 - Examples
 - "Preprogrammed" or "hardwired" industrial robots
 - Clocks
 - Other sensorless automata
 - NB: to be distinguished from closed versus open loop systems

Autonomy[2]

- Justification for Autonomous Agents
 - Sound engineering practice: “Intelligence demands robustness, adaptivity”
 - This course: mathematical and CS basis of autonomy in IAs

Structure of Intelligent Agents

- Agent Behavior
 - Given: sequence of percepts
 - Return: IA's actions
 - Simulator: description of results of actions
 - Real-world system: committed action

- Agent Programs
 - Functions that implement program
 - Assumed to run in computing environment (architecture)
 - Hardware architecture: computer organization
 - Software architecture: programming languages, operating systems
 - Agent = architecture + program

Example: Automated Taxi Driver

- Agent Type: Taxi Driver
- Percepts
 - Visual: cameras
 - Profilometer: speedometer, tachometer, odometer
 - Other: GPS, sonar, interactive (microphone)
- Actions
 - Steer, accelerate, brake
 - Talk to passenger
Example: Automated Taxi Driver [2]

- **Goals**
 - Safe, legal, fast, comfortable
 - Maximize profits
- **Environment**
 - Roads
 - Other traffic, pedestrians
 - Customers
- **Discussion:** Performance Requirements for Open Ended Task

Agent Framework: Simple Reflex Agents [1]

- **Agent Framework:**
 - Simple Reflex Agents

Agent Framework: Simple Reflex Agents [2]

- **Implementation and Properties**
 - Instantiation of generic skeleton agent: Figure 2.8
 - Function: Simple Reflex Agent (percept) returns action
 - static: rules, set of condition-action rules
 - state ← Interpret-Input (percept)
 - rule ← Rule-Match (state, rules)
 - action ← Rule-Action (rule)
 - return action

Agent Framework: Simple Reflex Agents [3]

- **Advantages**
 - Selection of best action based only on current state of world and rules
 - Simple, very efficient
 - Sometimes robust
- **Limitations and Disadvantages**
 - No memory (doesn't keep track of world)
 - Limits range of applicability

Agent Frameworks: (Reflex) Agents with State [1]

Agent Frameworks: (Reflex) Agents with State [2]

- **Implementation and Properties**
 - Instantiation of generic skeleton agent: Figure 2.10
 - Function: Reflex Agent With State (percept) returns action
 - static: state, description of current world state, rules, set of condition-action rules
 - state ← Update-State (state, percept)
 - rule ← Rule-Match (state, rules)
 - action ← Rule-Action (rule)
 - return action
Agent Frameworks: (Reflex) Agents with State [3]

Advantages
- Selection of best action based only on current state of world and rules
- Able to reason over past states of world
- Still efficient, somewhat more robust

Limitations and Disadvantages
- No way to express goals and preferences relative to goals
- Still limited range of applicability

Agent Frameworks: Goal-Based Agents [1]

Agent Frameworks: Goal-Based Agents [2]

Implementation and Properties
- Instantiation of generic skeleton agent: Figure 2.11
- Functional description
 - Chapter 13: classical planning
 - Requires more formal specification

Agent Frameworks: Goal-Based Agents [3]

Advantages
- Able to reason over goal, intermediate, and initial states
- Basis: automated reasoning
 - One implementation: theorem proving (first-order logic)
 - Powerful representation language and inference mechanism

Limitations and Disadvantages
- Efficiency limitations: can't feasibly solve many general problems
- No way to express preferences

Agent Frameworks: Utility-Based Agents [1]

Agent Frameworks: Utility-Based Agents [2]

Implementation and Properties
- Instantiation of generic skeleton agent: Figure 2.8
- function SimpleReflexAgent (percept) returns action
 - static: rules, set of condition-action rules
 - state ← Interpret-Input (percept)
 - rule ← Rule-Match (percept)
 - action ← Rule-Action (rule)
 - return action
Agent Frameworks: Utility-Based Agents [3]

Advantages
- Selection of best action based only on current state of world and rules
- Simple, very efficient
- Sometimes robust

Limitations and Disadvantages
- No memory (doesn't keep track of world)
- Limits range of applicability

Looking Ahead: Search
Solving Problems by Searching
- Problem solving agents: design, specification, implementation
- Specification components
 - Problems – formulating well-defined ones
 - Solutions – requirements, constraints
- Measuring performance
- Formulating Problems as (State Space) Search
- Data Structures Used in Search

Problem-Solving Agents [1]: Preliminary Design

Justification
- Rational IAs: act to reach environment that maximizes performance measure
- Need to formalize, operationalize this definition

Practical Issues
- Hard to find appropriate sequence of states
- Difficult to translate into IA design

Goals
- Chapter 2, R&N: simplifies task of translating agent specification to formal design
- First step in problem solving: formulation of goal(s) – “accept no substitutes”
- Chapters 3-4, R&N: goal = {world states | goal test is satisfied}

Problem-Solving Agents [2]: Preliminary Design

Problem Formulation
- Given: initial state, desired goal, specification of actions
- Find: achievable sequence of states (actions) mapping from initial to goal state

Search
- Actions: cause transitions between world states (e.g., applying effectors)
- Typically specified in terms of finding sequence of states (operators)

Problem-Solving Agents [1]: Specification

Input: Informal Objectives; Initial, Intermediate, Goal States; Actions
Output
- Path from initial to goal state
- Leads to design requirements for state space search problem
Logical Requirements
- States: representation of state of world (example: starting city, graph representation of Romanian map)
- Operators: descriptors of possible actions (example: moving to adjacent city)
- Goal test: state → boolean (example: at destination city?)
- Path cost: based on search, action costs (example: number of edges traversed)

Problem-Solving Agents [2]: Specification

Operational Requirements
- Search algorithm to find path
- Objective criterion: minimum cost (this and next 3 lectures)

Environment
- Agent can search in environment according to specifications
- Sometimes has full state and action descriptors; sometimes not!