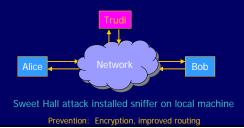
Network protocols

Vulnerabilities


Basic Security Problems

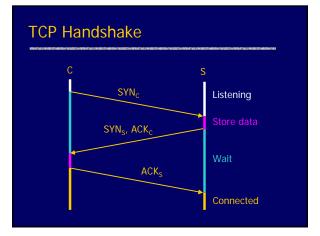
- Network packets pass by untrusted hostsEavesdropping, packet sniffing
- ◆IP addresses are public
- TCP connection requires state
 SYN flooding attack
- ◆TCP state easy to guess
 - TCP spoofing attack

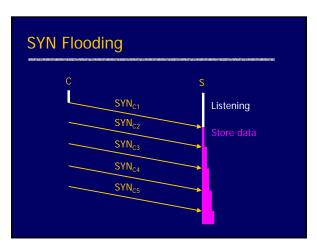
Packet Sniffing

Promiscuous NIC reads all packets

- Read all unencrypted data
- ftp, telnet send passwords in clear!

Smurf Attack


Choose victim


- Idea: Flood victim with packets from many sources
- ◆Generate ping stream (ICMP Echo Req)
- Network broadcast address with spoofed source IP set to victim

♦ Wait for responses

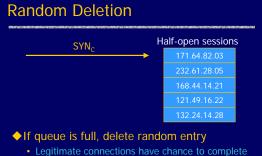
- Every host on target network will generate a ping reply (ICMP Echo Reply) to victim
- Ping reply stream can overload victim

Prevention: Turn off ping? Authenticated IP addresses?

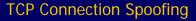
SYN Flooding

- Attacker sends many connection requests
 Spoofed source addresses
- Victim allocates resources for each request
 - Connection requests exist until timeoutFixed bound on half-open connections
- \diamond Resources exhausted \Rightarrow requests rejected

Protection against SYN Attacks


♦ Client sends SYN

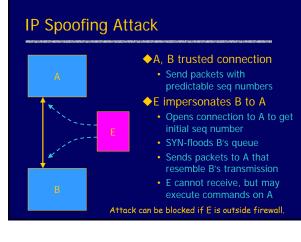
- Server responds to Client with SYN-ACK cookie
 - sqn = f(src addr, src port, dest addr, dest port, rand)
 Server does not save state
- Honest client responds with ACK(sqn)


Server checks response

• If matches SYN-ACK, establishes connection

See http://cr.yp.to/syncookies.html

- Fake addresses eventually deleted
- Easy to implement, some improvement



•Each TCP connection has an associated state

• Sequence number, port number

♦Problem

- Easy to guess state
- Port numbers are standard
- Sequence numbers often chosen in predictable way

TCP Sequence Numbers

Need high degree of unpredictability

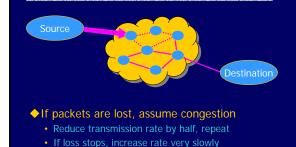
- If attacker knows initial seq # and amount of traffic sent, can estimate likely current values
- Send a flood of packets with likely seq numbers

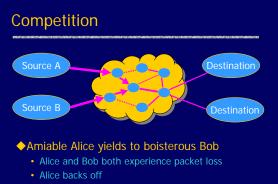
 larger bandwidth => larger flood possible

Reported to be safe from practical attacks

- Cisco IOS, OpenBSD 2.8-current, FreeBSD 4.3-RELEASE, AIX, HP/UX 11i, Linux Kernels after 1996
- Solaris 2.6 if strong seq numbers turned on:
 Set TCP_STRONG_ISS to 2 in /etc/default/inetinit.
- HP/UX , IRIX 6.5.3, ... if so configured

Cryptographic protection


Solutions above the transport layer


- Examples: SSL and SSH
- Protect against session hijacking and injected data
- Do not protect against denial-of-service attacks
 caused by spoofed packets

Solutions at network layer

- IPSec
- Can protect against
 - session hijacking and injection of data
 - denial-of-service attacks using session resets

TCP Congestion Control

• Bob disobeys protocol, gets better results

TCP Attack on Congestion Control

Misbehaving receiver can trick sender into ignoring congestion control

- Receiver: duplicate ACK indicates gap
 - Packets within seq number range assumed lost
 Sender executes fast retransmit algorithm
- Malicious receiver can
- Send duplicate ACK
 - ACK before data is received
 - needs some application level retransmission e.g HTTP 1.1 range requests ... See RFC 2581
- Solutions

- Add nonces – ACKs return nonce to prove reception

Routing Vulnerabilities

- Source routing attack
- Can direct response through compromised host
 Routing Information Protocol (RIP)
- Direct client traffic through compromised host
- Exterior gateway protocols
 - Advertise false routes
 - Send traffic through compromised hosts

Source Routing Attacks

Attack

- Destination host may use reverse of source route provided in TCP open request to return traffic
 - Modify the source address of a packet
 Route traffic through machine controlled by attacker
- ◆Defenses
- Derenses
 - Gateway rejects external packets claiming to be local
 - Reject pre-authorized connections if source routing info present
 - Only accept source route if trusted gateways listed in source routing info

Routing Table Update Protocols

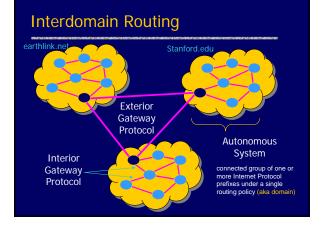
Interior Gateway Protocols: IGPs

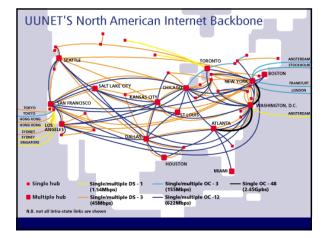
- distance vector type each gateway keeps track of its distance to all destinations
 - Gateway-to-Gateway: GGP
 - Routing Information Protocol: RIP

Exterior Gateway Protocol: EGP

used for communication between different autonomous systems

Routing Information Protocol (RIP)


Attack


- Intruder sends bogus routing information to a target and each of the gateways along the route
 - Impersonates an unused host
 Diverts traffic for that host to the intruder's machine
 Impersonates a used host
 - All traffic to that host
 - machine
 - Intruder inspects packets & resends to host w/ source routing
 - Allows capturing of unencrypted passwords, data, etc

Routing Information Protocol (RIP)

♦ Defense

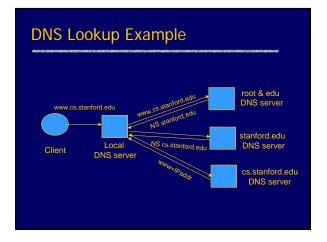
- Paranoid gateway
- Filters packets based on source and/or destination addresses
- Don't accept new routes to local networks
 Interferes with fault-tolerance but detects intrusion attempts
- Authenticate RIP packets
 - Difficult in a broadcast protocol
 - Only allows for authentication of prior sender

BGP overview

◆Iterative path announcement

- Path announcements grow from destination to source
- Subject to policy (transit, peering)
- Packets flow in reverse direction
- Protocol specification
 - Announcements *can* be shortest pathNodes allowed to use other policies
 - E.g., "cold-potato routing" by smaller peerNot obligated to use path you announce

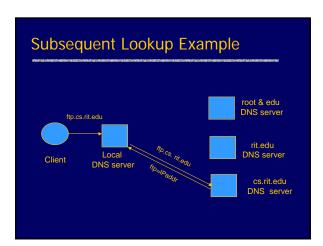
Domain Name System


DNS

DNS Root Name Servers

Root name servers

 Local name servers contact root servers when they cannot resolve a name



Caching

- ◆ DNS responses are cached
 - Quick response for repeated translation
 - Other queries may reuse some parts of lookup
 NS records for domains
- DNS negative queries are cached
 - Don't have to repeat past mistakes
 E.g. misspellings, search strings in resolv.conf
- Cached data periodically times out

 - TTL passed with every record

DNS Implementation Vulnerabilities

- Reverse query buffer overrun in BIND Releases 4.9 (4.9.7 prior) and Releases 8 (8.1.2 prior)
 - gain root access
 - abort DNS service
- ♦MS DNS for NT 4.0 (service pack 3 and prior)
 - crashes on chargen stream

Inherent DNS Vulnerabilities

- Users/hosts typically trust the host-address mapping provided by DNS
- ♦Problems
 - Zone transfers can provide useful list of target
 - Interception of requests or compromise of DNS servers can result in bogus responses
 - Solution authenticated requests/responses

Bellovin/Mockapetris Attack

- Trust relationships use symbolic addresses /etc/hosts.equiv contains friend.rit.edu
- Requests come with numeric source address • Use reverse DNS to find symbolic name
 - Decide access based on /etc/hosts.equiv, ...

Attack

Spoof reverse DNS to make host trust attacker

Reverse DNS

Given numeric IP address, find symbolic addr

◆To find 222.33.44.3,

- Query 44.33.222.in-addr.arpa
- Get list of symbolic addresses, e.g.,
 - 1 IN PTR server.small.com 2 IN PTR boss.small.com

 - 3 IN PTR ws1.small.com 4 IN PTR ws2.small.com

Attack

- Gain control of DNS service for domain
- Select target machine in domain
- Find trust relationships
 - SNMP, finger can help find active sessions, etc.
 - Example: target trusts host1
- Connect
 - Attempt rlogin from compromised machine
 - Target contacts reverse DNS server with IP addr
 - Use modified reverse DNS to say addr is host1
 - Target allows rlogin

Defense against this attack

Double-check reverse DNS

- · Modify rlogind, rshd to query DNS server
- See if symbolic addr maps to numeric addr
- ♦ Use another service besides DNS
 - Network Information Service (NIS, or YP)
 - Only works if attacker cannot control NIS ...
- Authenticate entries in DNS tables
 - Relies on some form of PKI?
 - Next lecture ...

Summary (I)

♦ Eavesdropping

- Encryption, improved routing
- ♦Smurf
 - Turn off ping? Authenticated IP addresses?
- ◆SYN Flooding
 - Cookies
 - Random deletion
- ◆IP spoofing
 - Use less predictable sequence numbers

Summary (II)

Source routing attacks

Additional info in packets, tighter control over routing

◆Interdomain routing

- Authenticated routing announcements
- Other issues
- ◆DNS attack
 - Double-check reverse DNS
 - Use another service besides DNS
 - Authenticate entries in DNS tables