Week 3
Transport Layer

These slides are modified from the slides
made available by Kurose and Ross. Computer Networking:
A Top Down Approach
Featuring the Internet,
2nd edition.

Jim Kurose, Keith Ross
Addison-Wesley, July
2002.

Transport Layer 3-1

Week 3: Transport Layer

Our goals:
O understand principles O learn about transport
behind transport layer protocols in the

layer services: Internet:
o multiplexing/demultipl O UDP: connectionless
exing transport
O reliable data transfer O TCP: connection-oriented

transport

o flow control
O TCP congestion control

O congestion control

Transport Layer 3-2

Transport services and protocols

O provide /ogical communication
between app processes
running on different hosts

O ftransport protocols run in
end systems

O send side: breaks app
messages into segments,
passes to network layer

O recv side: reassembles

network

segments into messages, Copcarr]
passes to app layer Fetiork |

O more than one transport
protocol available to apps

O Internet: TCP and UDP

Transport Layer 3-3

Internet transport-layer protocols

o reliable, in-order
delivery (TCP) =] —
O congestion control ool |
o flow control
O connection setup

0 unreliable, unordered

delivery: UDP
O no-frills extension of
“"best-effort” IP 7
O services hot available:

O delay guarantees
O bandwidth guarantees

Transport Layer 3-4

Multiplexing/demultiplexing

Multiplexing at send host:
gathering data from multiple
sockets, enveloping data with
header (later used for
demultiplexing)

Demultiplexing at recv host:

delivering received segments
to correct socket

[=socket D =process

P1) application) E’%M
transport transport transport
network network network
link link link
physical physical physical

host 1 host 2 host 3

Transport Layer 3-5

How demultiplexing works

O host receives IP datagrams
O each datagram has source 32 bits
IP address, destination IP
address
O each datagram carries 1
transport-layer segment
O each segment has source,
destination port number

source port #l dest port #

other header fields

(recall: well-known port licati
numbers for specific qp%ﬁ; fon
applications) (message)

O host uses IP addresses & port
numbers to direct segment to
appropriate socket

TCP/UDP segment format

Transport Layer 3-6

Connectionless demultiplexing

O Create sockets with port O When host receives UDP

numbers: segment:
DatagramSocket mySocketl = new O checks quTInﬂflon POM‘
DatagramSocket (99111) ; number in segment
DatagramSocket mySocket2 = new O directs UDP segment to
DatagramSocket (99222) ; socket with that port
7 UDP socket identified by number _
two-tuple: 0 IP datagrams with

different source IP
addresses and/or source
port numbers directed
to same socket

(dest IP address, dest port number)

Transport Layer 3-7

Connection-oriented demux

0 TCP socket identified 0 Server host may support

by 4-tuple: many simultaneous TCP
o source IP address sockefts:
O source port number O each socket identified by
O dest IP address its own 4-tuple
o dest port number 0 Web servers have
O recv host uses all four different sockets for
values to direct each connecting client
segment to appropriate O non-persistent HTTP will
socket have different socket for

each request

Transport Layer 3-8

UDP: User Datagram Protocol [RFC 768]

0 “no frills," "bare bones"

Internet transport Why is there a UDP?
‘l"'"°*°c°| .) O no connection
O “best effort” service, UDP establishment (which can
segments may be: add delay)
O lost O simple: no connection state
o delivered out of order at sender, receiver
to app O small segment header
O connectionless: O no congestion control: UDP
o no handshaking between can blast away as fast as
UDP sender, receiver desired
O each UDP segment

handled independently
of others

Transport Layer 3-9

UDP: more

O often used for streaming

multimedia apps 32 bits >
O loss tolerant Length, in | Source port #| dest port #
O rate sensitive bytes of UDP [~ length checksum
segment
O other UDP uses ncluding
o DNS header
o SNMP
O reliable transfer over UDP: Application
add reliability at data
application layer (message)
o application-specific

error recovery!
UDP segment format

Transport Layer 3-10

UDP checksum

Goal: detect “errors” (e.g., flipped bits) in transmitted

segment
Sender: Receiver:
O freat segment contents 0 compute checksum of
as sequence of 16-bit received segment
integers O check if computed checksum

O checksum: addition (1's equals checksum field value:
complement sum) of o NO - error detected
segment contents 0 YES - no error detected.

O sender puts checksum But maybe errors
;{Jllllde into UDP checksum nonetheless? More later

ie

Transport Layer 3-11

Principles of Reliable data transfer

0 important in app., transport, link layers
O top-10 list of important networking topics!

receiver
process

(Jreliable channel Zdt—send”L delivez data()
relicble data reliable data
[tfransfer protocolff transfer protocol
(sending side) (receiving side)

udt_send)} [packel] tzat_revo)

L-{ unreliable channel) J

(a) provided service (b) service implementation

application
layer

transport
layer

O characteristics of unreliable channel will determine
complexity of reliable data transfer protocol (rdt)

Transport Layer 3-12

Reliable data transfer: getting started

rdt_send () : called from above,
(e.g., by app.). Passed data to

deliver data(): called by ‘
deliver fo receiver upper layer

rdt to deliver data to upper

rdt send()
_ | Gata]

send [relicble data relicble data receive
id fransfer profocol fransfer protocol id
Slde |sending side) (receiving side) side

udt_send()t [packeT] Irdt_rcv [0}

/ L{ iunrelioble channel)J

deliver_ data()

udt_send () : called by rdt,

rdt_rcv () : called when packet
to transfer packet over

arrives on rcv-side of channel

unreliable channel to receiver

Transport Layer 3-13

Reliable data transfer: getting started

Wwelll:

0 incrementally develop sender, receiver sides of
reliable data transfer protocol (rdt)

0 consider only unidirectional data transfer
o but control info will flow on both directions!

O use finite state machines (FSM) to specify

sender, receiver
event causing state transition

actions taken on state transition

state: when in this
“state” next state
uniquely determined
by next event

Transport Layer 3-14

Rd11.0: reliable transfer over a reliable channel

O underlying channel perfectly reliable
O no bit errors
O no loss of packets

O separate FSMs for sender, receiver:
O sender sends data into underlying channel
O receiver read data from underlying channel

rdt_send(data) rdt_rcv(packet)

extract (packet,data)

packet = make_pkt(data) deliver_data(data)

udt_send(packet)

sender receiver

Transport Layer 3-15

Rdt2.0: channel with bit errors

O underlying channel may flip bits in packet
O recall: UDP checksum to detect bit errors
0 the question: how to recover from errors:

O acknowledgements (ACKs): receiver explicitly tells sender
that pkt received OK

O negative acknowledgements (NAKs): receiver explicitly
tells sender that pkt had errors

O sender retransmits pkt on receipt of NAK
O human scenarios using ACKs, NAKs?
0 new mechanisms in rdt2.0 (beyond rdt1.0):
O error detection
O receiver feedback: control msgs (ACK,NAK) rcvr->sender

Transport Layer 3-16

rdt2.0: operation with no errors

rdt_send(data)
snkpkt = make_pkt(data, checksum)
d(sndpk

rdt_rcv(rcvpkt) &&

isNAK(rcvpkt)

_ rdt_rcv(rcvpkt) &&
udt_send(sndpkt) corrupt(rcvpkt)

udt_send(NAK)

call from
above

rdt_rev(rcvpkf) &&
notcorrupt(rcvpkt)
extract(rcvpkt,data)
deliver_data(data)
udt_send(ACK)

Transport Layer 3-17

rdt2.0: error scenario

rdt_send(data)
snkpkt = make_pkt(data, checksum)
d(sndpk

call from
above

rdt_rcv(rcvpkt) && isACK(rcvpkt)

¥

A

rdt rcvgrcvgq &&
notcorrupt(fcvpkt)
extract(rcvpkt,data)

deliver_data(data)
udt_send(ACK)

Transport Layer 3-18

rdt2.0 has a fatal flaw!

What happens if Handling duplicates:
ACK/NAK corrupted? O sender adds seguence

0 sender doesn't know what number to each pkt
happened at receiver! O sender retransmits current

O can't just refransmit: pkt if ACK/NAK garbled
possible duplicate O receiver discards (doesn't

deliver up) duplicate pkt
What to do?

0 sender ACKs/NAKs .
receiver's ACK/NAK? What stop and wait
if sender ACK/NAK lost? Sender sends one packef,
O refransmit, but this might :2::0":‘225 for receiver
cause retransmission of
correctly received pkt!

Transport Layer 3-19

rdt2.2: a NAK-free protocol

O same functionality as rdt2.1, using NAKs only
0 instead of NAK, receiver sends ACK for last pkt
received OK
O receiver must explicitly include seq # of pkt being ACKed
O duplicate ACK at sender results in same action as
NAK: retransmit current pkt

Transport Layer 3-20

rdt3.0: channels with errors and loss

New assumption: Approach: sender waits

underlying channel can “reasonable” amount of
also lose packets (data time for ACK
or ACKs) O retransmits if no ACK
O checksum, seq. #, ACKs, received in this time
retransmissions will be O if pkt (or ACK) just delayed
of help, but not enough (not lost):
Q: how to deal with loss? O retransmission will be

duplicate, but use of seq.
#'s already handles this

O receiver must specify seq
of pkt being ACKed
O requires countdown timer

O sender waits until
certain data or ACK
lost, then retransmits

O yuck: drawbacks?

Transport Layer 3-21

rdt3.0 in action

sender receiver sender receiver
_— _— pkt
Pkt send pki0 '\0’ rev pkio
send pki0 \ eV pki0 ok seng ACKO
ACK send ACKO R
- rcv ACKO

rcv ACKO send pkil ktl
send pkil Kt | \KR (Ioss)

rcv pktl

/

ACK send ACK1
CVACK1
send pkiO pkt timeout okt -
B KO ov pki0 resend pkil \ oV pkil
Ci v
send ACKO ACK send ACKI
rcvACK1
send pktQ Kt

@) operation with no loss rev pki0
() o S B

(b) lost packet

Transport Layer 3-22

rdt3.0 in action

sender receiver sender receiver
pkt

k0 ~—L70_ | ovpno send pki0 \"‘ rcv pkio
ACK ¢ send ACKO ACK g send ACKO
rcv ACKO | rcv ACKO
send pkt1 pki send pkil K
rev pktl

rev pktl
ACK, send ACK1 send ACK1
(loss) X:
timeout
timeout pkt resend pkt1
resend pkil \rcv Pkt rcv pkil
ACK (detect duplicate) revACK1 (dletect duplicate)
ACKL - send ACK1 send pki0 send ACK1
ICV/
R 8R0
ACK rcv pki0 ACK o
- send ACKO
() lost ACK (d) premature timeout

Transport Layer 3-23

Performance of rd+3.0

O rdt3.0 works, but performance stinks
O example: 1 Gbps link, 15 ms e-e prop. delay, 1KB packet:

_ L (packet length in bits) _ 8kb/pkt

T, = - e
fransmit ™ R(transmission rate, bps) ~ 10**9 b/sec 8 microsec
u - L/R 00800027
sender RTT+L/R 30008
O U geneert Utilization - fraction of time sender busy sending

O 1KB pkt every 30 msec -> 33kB/sec thruput over 1 Gbps link
o network protocol limits use of physical resources!

Transport Layer 3-24

rdt3.0: stop-and-wait operation

sender receiver

first packet bit transmitted, t = 0 —o-—----mmmmmmeem o]
last packet bit transmitted, t = L / R

first packet bit arrives

RTT last packet bit arrives, send
ACK

ACK arrives, send nexl
packet, t=RTT +L/R

L/R 008 00027

sender™ RTT+L/R 30008

Transport Layer 3-25

Pipelined protocols

Pipelining: sender allows multiple, “in-flight", yet-to-
be-acknowledged pkts
O range of sequence numbers must be increased
O buffering at sender and/or receiver

data packet—

«+— ACK packets

(@) a stop-and-wailt profocol in operation (b) a pipelined proocol in operation

O Two generic forms of pipelined protocols: go-Back-N,
selective repeat

Transport Layer 3-26

Pipelining: increased utilization

sender receiver

first packet bit transmitted, t = 0 4
last bit transmitted, t = L / Rz}

first packet bit arrives
= last packet bit arrives, send ACK
> last bit of 2" packet arrives, send ACK
last bit of 3 packet arrives, send ACK

ACK arrives, send nex
packet, t=RTT +L/R

Increase utilization
| by a factor of 3!
v

__3*"L/R _ 024

V] = = = 0.0008
sender RTT+L/R 30008

Transport Layer 3-27

Go-Back-N

Sender:
O k-bit seq # in pkt header
0 “window" of up o N, consecutive unack'ed pkts allowed

send_base nexfsegnum aireaidly wsable, not
L l ack’ed yet sent
DNRR (L DTATIIOO0N0 | seriagts] rorone
£ window sze —4
N

O ACK(n): ACKs all pkts up to, including seq # n - “cumulative ACK"
o may deceive duplicate ACKs (see receiver)

O timer for each in-flight pkt

O timeout(n): retransmit pkt n and all higher seq # pkts in window

Transport Layer 3-28

Selective Repeat

O receiver /ndividually acknowledges all correctly
received pkts
O buffers pkts, as needed, for eventual in-order delivery
to upper layer
O sender only resends pkts for which ACK not
received
O sender timer for each unACKed pkt
O sender window
o N consecutive seq #'s
O again limits seq #s of sent, unACKed pkts

Transport Layer 3-29

Selective repeat in action

pkt0 sent

01 23]a567 85 T T b 1 oud, delivered. ACKD semt
pktl sent ofte3alssras
0123456700
Dk

[i123]lase 78

(loss)

. ACKL sent

pkt3 sent, vindow full

[f123laseres

pkt3 rovd, Imffered. 4CK3 sent

01[2345[67389

ACKO rovd, pkt4 sent
ifiesdseras

ACK1 rovd. pktS sent

0123456789

pkt? TIMEOUT. pkt? resent

01234567389

pktd rovd, buffered, ACKY sent

Y
. ACKS semt
0123456783

pkt2 rovd, pkt2,pktd, phktd. phkts
delivered, ACK2 sent

012345f789)

ACK3 rovd, mothing sent

o1[z3asle s

*t Layer 3-30

TCP: Overview recs: 793, 1122, 1323, 2018, 2581

O point-to-point: o full duplex data:
O one sender, one receiver O bi-directional data flow
O reliable, in-order byte in same connection
steam: © MSS: maximum segment
size
O connection-oriented:
o handshaking (exchange
of control msgs) init's
sender, receiver state
before data exchange
0 flow controlled:

wsa O sender will not
oot overwhelm receiver

O ho “"message boundaries”
O pipelined:
O TCP congestion and flow
control set window size

0 send & receive buffers

Transport Layer 3-31

TCP segment structure

32 bits
URG: urgent data countin
(generally not usedy~._| source port # | dest port # by by‘regs
ACK: ACK # sequence number of data

valid\\@kﬂgwledgemenf number

(not segments!)

PSH: push data now M R_Hf Receive window

| — | # bytes
(generally not used) Mm Urg data pnter revr willing
RST, SYN, FIN:— | Op‘r/ivé (variable length) to accept
connection estab
(setup, teardown
commands) application
Internet data
checksum (variable length)
(as in UDP)

Transport Layer 3-32

TCP seq. #'s and ACKs

Seq. #'s: @ rost 4 Host & D
O byte stream
“number” of first User _ seq.y,
. : 2 ACK<.
byte in segment's trpes W
data host _ACK:
ACKs: ~ rgcerp? o
a4l ez 'C', echoes
O seq # of next byte concT® poK=tS: back 'C

expected from
other side host ACKs
O cumulative ACK receipt go
Q: how receiver handles of e.?,“’ed W’
out-of-order segments
O A: TCP spec doesn't e
say, - up to simple telnet scenario ¢
implementor

Transport Layer 3-33

TCP Round Trip Time and Timeout

Q: how to set TCP
timeout value?
O longer than RTT
O but RTT varies
O too short: premature
timeout
O unnecessary
retransmissions
O too long: slow reaction
to segment loss

Q: how to estimate RTT?

0 SampleRTT: measured time from
segment transmission until ACK
receipt

O ighore retransmissions

O SampleRTT will vary, want

estimated RTT "smoother”

O average several recent

measurements, not just
current SampleRTT

Transport Layer 3-34

TCP Round Trip Time and Timeout

EstimatedRTT = (1- o) *EstimatedRTT + a*SampleRTT
O Exponential weighted moving average

0 influence of past sample decreases exponentially fast
O typical value: @ =0.125

Transport Layer 3-35

Example RTT estimation:

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

350

18 15 2 2 % 4

50 s e 7 78 8 @ 9 16
time (secomnds)

[SampleRTT —= Estmated AT

Transport Layer 3-36

TCP Round Trip Time and Timeout

Setting the timeout

0 EstimtedRTT plus “safety margin”
O large variation in EstimatedRTT -> larger safety margin
0 first estimate of how much SampleRTT deviates from
EstimatedRTT:

DevRTT = (1-B)*DevRTT +
B* | SampleRTT-EstimatedRTT|

(typically, B = 0.25)

TCP reliable data transfer

O TCP creates rdt
service on top of IP's
unreliable service

O Pipelined segments
O Cumulative acks

O TCP uses single
retransmission timer

0 Retransmissions are
triggered by:
O ftimeout events
o duplicate acks
O Initially consider
simplified TCP sender:
O ighore duplicate acks
o ignore flow control,

Then set timeout interval:

TimeoutInterval = EstimatedRTT + 4*DevRTT

Transport Layer 3-37

congestion control

Transport Layer 3-38

TCP: retransmission scenarios

@Host 4 Host e b

S
<9;
0
‘y
X

loss

Seq<
29292, 8 byte, data

ko\&;ﬂ)“

<— timeout—»

SendBase
=100

time
lost ACK scenario

st A Host a@D

H
5
s
£
3
L
v
Sendb %
endbase
=100 5
SendBase g
=120 £
&
o
i
w
SendBase n
=120 premature timeout

time

Transport Layer 3-39

TCP retransmission scenarios (more)
B st 4 Host 8| [

eg=9;
2,8 bytes data

e
Seg=10p, 20,.1S

X: S datg
loss
AWK/

time
Cumulative ACK scenario

SendBase
=120

<«—— timeout —»

Transport Layer 3-40

Fast Retransmit

O Time-out period often
relatively long:
O long delay before
resending lost packet
O Detect lost segments
via duplicate ACKs.
O Sender often sends

many segments back-to-
back

O If segment is lost,
there will likely be many
duplicate ACKs.

O If sender receives 3
ACKs for the same
data, it supposes that
segment after ACKed
data was lost:

o fast retransmit: resend
segment before timer
expires

Transport Layer 3-41

Fast retransmit algorithm:

event: ACK received, with ACK field value of y
if (y > SendBase) {
SendBase =y
if (there are currently not-yet-acknowledged segments)
start timer
}

else {
increment count of dup ACKs received for y
if (count of dup ACKs received for y = 3) {
resend segment with sequence number y

}

a duplicate ACK for

fast retransmit
already ACKed segment

Transport Layer 3-42

TCP Flow Control

flow control

sender won't overflow
receiver's buffer by

transmitting too much,

0 receive side of TCP
connection has a

receive buffer: too fast
f— RevWindow —f

data from Z% /////: application O speed-matching
v s —"mew service: matching the
7/ send rate to the

b RevBuflr ———— receiving app’s drain

rate
O app process may be

slow at reading from
buffer

Transport Layer 3-43

TCP Flow control: how it works

f— RevWindow —f

O Rcvr advertises spare
| i room by including value
P of RevWindow in

segments
0 Sender limits unACKed
(Suppose TCP receiver data to RevWindow
discards out-of-order O guarantees receive
segments) buffer doesn't overflow
0 spare room in buffer
= RcvWindow

= RcvBuffer-[LastByteRcvd -
LastByteRead]

7

data from
i

f———— RevBuffer ———

Transport Layer 3-44

TCP Connection Management

Recall: TCP sender, receiver ~ Three way handshake:
establish “connection”

before exchanging data Step 1: client host sends TCP
segments SYN segment to server
0 initialize TCP variables: O specifies initial seq #
O seq. #s O no data
o buffers, flow control Step 2: server host receives
info (e.g. ReviWindow) SYN, replies with SYNACK
O client: connection initiator segment

Socket clientSocket = new

o
Sochet ("hostname", "port server allocates buffers

O specifies server initial

number") ;
0 server: contacted by client seq. #
Sockat) : Y - Step 3: client receives SYNACK,

replies with ACK segment,

welcomeSocket.accept () ; " .
which may contain data

Transport Layer 3-45

TCP Connection Management (cont.)

Closing a connection: 18 client server [

. close
client closes socket: N

clientSocket.close();

Step 1: client end system Aok
sends TCP FIN control o

segment to server

close

Ack

Step 2: server receives
FIN, replies with ACK.
Closes connection, sends
FIN.

d wait

Q. time

close

Transport Layer 3-46

TCP Connection Management (cont.)

Step 3: client receives FIN, @ client server@

replies with ACK. closing

£
O Enters “timed wait" - N

will respond with ACK

to received FINs ACK I
closing

. W
Step 4: server, receives i3

ACK. Connection closed.
ACk

d wait

Note: with small
modification, can handle
simultaneous FINs.

closed

Q- time

close

Transport Layer 3-47

Principles of Congestion Control

Congestion:
0 informally: “too many sources sending too much

data too fast for network to handle”
o different from flow control!
O manifestations:

o lost packets (buffer overflow at routers)

0O long delays (queueing in router buffers)

O a top-10 problem!

Transport Layer 3-48

TCP Congestion Control

0 end-end control (ho network
assistance)

0 sender limits transmission:
LastByteSent-LastByteAcked

< CongWin
O Roughly,
_ CongWin
rate = ﬁ_r— Bytes/sec

O CongWin is dynamic, function
of perceived network
congestion

How does sender
perceive congestion?
O loss event = timeout or
3 duplicate acks
O TCP sender reduces
rate (CongWin) after
loss event
three mechanisms:
o AIMD
O slow start
O conservative after
timeout events

Transport Layer 3-49

