Week 2
Application Layer

These slides are modified from the slides
made available by Kurose and Ross. Computer Networking:
A Top Down Approach
Featuring the Internet,
2nd edition.

Jim Kurose, Keith Ross
Addison-Wesley, July
2002.

2: Application Layer 1

Week 2: Application Layer

Our goals: 0 learn about protocols
0 conceptual, by examining popular
implementation application-level
aspects of network protocols
application protocols o HTTP
o fransport-layer o FTP
service models O SMTP / POP3 / IMAP
o client-server © DNs)
paradigm O programming network
O peer-to-peer applications
paradigm O socket APT

2: Application Layer 2

Network applications: some jargon

Process: program running user agent: interfaces

within a host. with user “above" and
0 within same host, two network “below".
processes communicate 0 implements user
using interprocess interface &
communication (defined gpplication-level
by 0S). protocol
0 processes running in O Web: browser

different hosts o E-mail: mail reader
communicate with an o streaming audio/video:
application-layer media player
protocol

2: Application Layer 3

Applications and application-layer protocols

Application: communicating,
distributed processes
O e.g., e-mail, Web, P2P file
sharing, instant messaging
O running in end systems
(hosts)
O exchange messages to
implement application
Application-layer protocols
O one “piece” of an app
o define messages (@ [t]
exchanged by apps and . ok
actions taken 5
O use communication services
provided by lower layer
protocols (TCP, UDP

application

[data link]

2: Application Layer 4

App-layer protocol defines

O Types of messages Public-domain protocols:
exchanged, eg, request 4 defined in RFCs
& response messages 5 qliows for

0 Syntax of message interoperability

types: what fields in
messages & how fields 7 eg, HTTP, SMTP

are delineated
0 Semantics of the
fields, ie, meaning of
information in fields
0 Rules for when and
how processes send &
respond fo messages 2: Application Layer 5

Client-server paradigm

Typical network app has two
pieces: client and server

Client:

O initiates contact with server
("speaks first")

0 typically requests service from
server,

0 Web: client implemented in
browser; e-mail: in mail reader

Server: @
O provides requested service to client

O e.g., Web server sends requested Web
page, mail server delivers e-mail

2: Application Layer 6

Processes communicating across network

. he
O process sends/receives hostor conver
messages to/from its
SOCkeT controlled by
& app developer
0 socket analogous to door

O sending process shoves
message out door

O sending process asssumes
transport infrastructure
on other side of door which
brings message to socket
at receiving process

O APT: (1) choice of transport protocol; (2) ability to fix
a few parameters (lots more on this later)

TCP with
buffers,
variables

TCP with
buffers,
variables

Internet

controlled
by OS

2: Application Layer 7

Addressing processes:

0 For a process to 0 Identifier includes
receive messages, it both the IP address
must have an identifier and port numbers

O Every host has a unique associated with the
32-bit IP address process on the host.

0 Q: does the IP address O Example port numbers:
of the host on which o HTTP server: 80
the process runs O Mail server: 25
suffice for identifying 0 More on this later
the process?

O Answer: No, many
processes can be
running on same host

2: Application Layer 8

What transport service does an app heed?

Data loss Bandwidth
O some apps (e.g., audio) can 5 some apps (e.g.,
tolerate some loss multimedia) require

o gTh:;fappi (ﬁ;g¥)fi|e . minimum amount of
ransfer, telnet) require .
100% reliable data bandwidth to be

“effective”
transfer N .
Timi O other apps (“elastic
iming apps") make use of
3 some apps (e.g., whatever bandwidth
Internet telephony, they get

interactive games)
require low delay o be
“effective”

2: Application Layer 9

Transport service requirements of common apps

Application Dataloss Bandwidth Time Sensitive
file transfer no loss elastic no
e-mail no loss elastic no
Web documents no loss elastic no

real-time audio/video loss-tolerant audio: 5kbps-1Mbps Yes, 100's msec
video:10kbps-5Mbps

stored audio/video |oss-tolerant same as above yes, few secs
interactive games loss-tolerant few kbps up yes, 700's msec
instant messaging no loss elastic yes and no

2: Application Layer 10

Internet transport protocols services

TCP service: UDP service:

O connection-oriented: setup O unreliable data transfer
required between client and between sending and
server processes receiving process

0 reliable transport between O does not provide:
sending and receiving process connection setup,

reliability, flow control,
congestion control, timing,
or bandwidth guarantee

0O flow control: sender won't
overwhelm receiver

O congestion control: throttle
sender when network
overloaded Q: why bother? Why is

0 does not providing: timing, there a UDP?
minimum bandwidth
guarantees

2: Application Layer 11

Internet apps: application, transport protocols

Application Underlying
Application layer protocol transport protocol
e-mail _ SMTP [RFC 2821] TCP
remote terminal access _ Telnet [RFC 854] TCP
Web HTTP [RFC 2616] TCP
file transfer FTP [RFC 959] TCP
streaming multimedia proprietary TCP or UDP

(e.g. RealNetworks)
Internet telephony proprietary
(e.g., Dialpad) typically UDP

2: Application Layer 12

Web and HTTP

First some jargon

O Web page consists of objects
O Object can be HTML file, JPEG image, Java

applet, audio file,...

O Web page consists of base HTML-file which
includes several referenced objects

0 Each object is addressable by a URL

0 Example URL:

www.cs.rit.edu/somecourse/pic.gif

host name

path name

2: Application Layer 13

HTTP overview

transfer protocol

0 Web's application layer PC running A Loveg,
protocol Explorer e
O client/server model e
O client: browser that
requests, receives,
“displays” Web objects
O server: Web server
sends objects in
response to requests
0 HTTP 1.0: RFC 1945

0 HTTP 1.1: RFC 2068

HTTP: hypertext @

Server
running
Apache Web
server

Mac running
Navigator

2: Application Layer 14

HTTP overview (continued)

Uses TCP:

O client initiates TCP
connection (creates socket)
to server, port 80

0 server accepts TCP
connection from client

O HTTP messages (application-
layer protocol messages)
exchanged between browser
(HTTP client) and Web
server (HTTP server)

0 TCP connection closed

HTTP is "stateless”

O server maintains no
information about
past client requests

aside

Protocols that maintain
"state” are complex!

O past history (state) must
be maintained

O if server/client crashes,
their views of "state” may
be inconsistent, must be
reconciled

2: Application Layer 15

HTTP connections

Nonpersistent HTTP

O At most one object is
sent over a TCP
connection.

0 HTTP/1.0 uses
nonpersistent HTTP

Persistent HTTP

O Multiple objects can
be sent over single
TCP connection
between client and
server.

0 HTTP/1.1 uses
persistent connections
in default mode

2: Application Layer 16

Nonpersistent HTTP

Suppose user enters URL

www.cs.rit.edu/someDepartment/home.index

la. HTTP client initiates TCP
connection to HTTP server
(process) at www.cs.rit.edu on
port 80

2. HTTP client sends HTTP
request message (containing
URL) into TCP connection
socket. Message indicates
that client wants object
someDepartment/home.inde;

time
v

(contains text,
references to 10

jpeg images)

1b. HTTP server at host

www.cs.rit.edu waiting for TCP
connection at port 80.
“accepts” connection, notifying
client

3. HTTP server receives request

message, forms response
message containing requested
object, and sends message
into its socket

2: Application Layer 17

time 6.

v

Nonpersistent HTTP (cont.)

/ 4. HTTP server closes TCP

connection.

5. HTTP client receives response
message containing html file,
displays html. Parsing html
file, finds 10 referenced jpeg
objects

Steps 1-5 repeated for each
of 10 jpeg objects

2: Application Layer 18

Response time modeling

Definition of RTT: time to send
a small packet to travel from

client to server and back.
Response time:

g

o initiate TCP‘
O one RTT fto initiate TCP connection
connection {
O one RTT for HTTP request requew

time to
}ransmit
file

response to return
O file transmission time
total = 2RTT+transmit time muuu

and first few bytes of HTTP ile { \

v v
time time

2: Application Layer 19

Persistent HTTP

Nonpersistent HTTP issues:

O requires 2 RTTs per object

0 OS must work and allocate
host resources for each TCP
connection

O but browsers of ten open
parallel TCP connections to
fetch referenced objects

Persistent HTTP

O server leaves connection
open after sending response

O subsequent HTTP messages
between same client/server
are sent over connection

Persistent without pipelining:

O client issues new request
only when previous
response has been received

0 one RTT for each
referenced object

Persistent with pipelining:

0 default in HTTP/1.1

O client sends requests as
soon as it encounters a
referenced object

0 as little as one RTT for all
the referenced objects

2: Application Layer 20

HTTP request message

O two types of HTTP messages: request, response
O HTTP request message:
O ASCII (human-readable format)

request line
(GET,POST, >
HEAD commands)

GET /somedir/page.html HTTP/1.1
Host: www.someschool.edu
User-agent: Mozilla/4.0
header Connection: close

lines Accept-language: fr

Carriage return,—,

line feed
indicates end
of message

(extra carriage return, line feed)

2: Application Layer 21

HTTP request message: general format

request
line

header
lines

Entity Body

2: Application Layer 22

Uploading form input

Post method:

O Web page often
includes form input

O Input is uploaded to
server in entity body

URL method:
0 Uses GET method

0 Input is uploaded in
URL field of request
line:

www.somesite.com/animalsearch?monkeys&banana

2: Application Layer 23

Method types

HTTP/1.0
0 GET
0 POST
0 HEAD
O asks server to leave

requested object out of
response

HTTP/1.1
0 GET, POST, HEAD
oPUT
O uploads file in entity
body to path specified
in URL field
O DELETE

O deletes file specified in
the URL field

2: Application Layer 24

HTTP response message

status line
(protocol
status code SHTTR/1.1 200 OK
status phrase) Connection close
Date: Thu, 06 Aug 1998 12:00:15 GMT
header Server: Apache/1.3.0 (Unix)

Last-Modified: Mon, 22 Jun 1998
Content-Length: 6821
Content-Type: text/html

lines

data, e.g., — data data data data data ...
requested
HTML file

2: Application Layer 25

HTTP response status codes

In first line in server->client response message.

A few sample codes:
200 OK

O request succeeded, requested object later in this message

301 Moved Permanently

O requested object moved, new location specified later in

this message (Location:)
400 Bad Request

O request message not understood by server

404 Not Found

O requested document not found on this server
505 HTTP Version Not Supported

2: Application Layer 26

User-server interaction: authorization

Authorization : control access to
server content

client server
O authorization credentials:

usual http request msg L,
typically name, password

401: authorization req. [~
O stateless: client must present WWW _authenticate:
authorization in each request
o authorization: header line in usual http request msg
each request + Authorization: <cred>

O if no authorization: header, usual http response msg

server refuses access,
sends

WWW authenticate: usual hTTP rgques‘r msg
Lo + Authorization: <cred>
header line in response .
usual http response msg *'Te

2: Application Layer 27

Cookies: keeping "state”

Many major Web sites
use cookies

Four components:

1) cookie header line in
the HTTP response
message

2) cookie header line in
HTTP request message

3) cookie file kept on
user's host and managed
by user's browser

4) back-end database at
Web site

Example:

O Susan access Internet
always from same PC

O She visits a specific e-
commerce site for first
time

o When initial HTTP
requests arrives at site,
site creates a unique ID
and creates an entry in
backend database for
ID

2: Application Layer 28

Cookies: keeping "state” (cont.)

client server
Cookie file usual http request msg L, server %i,,,@/
usual http response + creates ID (%, 7,
ebay: 8734 Set-cookie: 1678 | 1678 for user \é"@

Cookie file usual http request msg

cookie: 1678 cookie-

specific
usual http response msg action

usual http request msg
cookie: 1678

spectific
usual http response msg action

2: Application Layer 29

amazon: 1678
ebay: 8734

one week later:

Cookie file cookie-

amazon: 1678
ebay: 8734

Cookies (continued)

What cookies can bring:
O authorization

O shopping carts

O recommendations

0 user session state
(Web e-mail)

Cookies and privacy:

aside

O cookies permit sites to
learn a lot about you

O you may supply hame
and e-mail fo sites

0 search engines use
redirection & cookies
to learn yet more

0 advertising companies
obtain info across
sites

2: Application Layer 30

0 Goal: don't send object if

Conditional GET: client-side caching

client server

client has up-to-date cached —" " L{TTp request msq
version —modified—since: .

’) If mod:j:::)sxnce —~» ObJECT
client: specify date of not
cached copy in HTTP request — ifi

1£ ; P_Y ; . 9 HTTP response modified

-modified-since:
HTTP/1.0
<date> 304 Not Modified
server: response contains no o ______
object if cached copy is up-
To:]dcd‘e' pY P | HTTP request msg
8 If-modified-since: |[—p
HTTP/1.0 304 Not <date> object
Modified modified
HTTP response [
47 HTTP/1.0 200 OK
<data>

2: Application Layer 31

FTP: the file transfer protocol

Ak

FTP ETP file transfer FTP
_user | rlient server
interface
at host local file remote file
system system

O transfer file fo/from remote host
O client/server model

O client: side that initiates transfer (either to/from
remote)

O server: remote host
O ftp: RFC 959
O ftp server: port 21

2: Application Layer 32

FTP: separate control, data connections

TCP control connection

O FTP client contacts FTP port 21
server at port 21, specifying @
T?P as TFGI'I'SPOPT meOCO,| TCP data connection

0 Client obtains authorization il port 20 FTP
over control connection client server

O Client browses remote
directory by sending
commands over control

0 Server opens a second TCP
data connection to fransfer

connhection. another file. A
7 When server receives a o 50"2'20’ connection: “out of
an,

command for a file transfer,
the server opens a TCP data O FTP server maintains “state":

connection to client current directory, earlier
O After transferring one file, authentication

server closes connection.
2: Application Layer 33

FTP commands, responses

Sample commands: Sample return codes

0 sent as ASCII text over 0 status code and phrase (as
control channel in HTTP)

0 USER username 0 331 Username OK,

0 PASS password password required

0 125 data connection
already open;
transfer starting

0 RETR filename refrieves 5 435 can’t open data

0 LIST return list of file in
current directory

(gets) file connection

0 STOR filename stores 0 452 Error writing
(puts) file onto remote file
host

2: Application Layer 34

Electronic Mail () outgoing

message queue

0 user mailbox

Three major components:
0O user agents
O mail servers

O simple mail transfer
protocol: SMTP

User Agent

0 ak.a. "mail reader”

0 composing, editing, reading
mail messages

0 e.g., Eudora, Outlook, elm,
Netscape Messenger

O outgoing, incoming messages
stored on server

2: Application Layer 35

Electronic Mail: mail servers

Mail Servers
O mailbox contains incoming
messages for user
0 message queue of outgoing
(to be sent) mail messages
0 SMTP protocol between mail
servers to send email
messages
o client: sending mail
server
O “server": receiving mail
server

2: Application Layer 36

Electronic Mail: SMTP [RFC 2821]

O uses TCP to reliably transfer email message from client
to server, port 25

O direct transfer: sending server to receiving server
O three phases of transfer

o handshaking (greeting)

O transfer of messages

O closure
0 command/response interaction

O commands: ASCIT text

O response: status code and phrase

0 messages must be in 7-bit ASCIT

2: Application Layer 37

Mail message format

SMTP: protocol for
exchanging email msgs ,
RFC 822: standard for text —
message format:
O header lines, e.g.,
o To:
o From:
O Subject:
different from SMTP
commands\
O body
O the “message”, ASCIT
characters only

body

blank
line

2: Application Layer 38

Message format: multimedia extensions

O MIME: multimedia mail extension, RFC 2045, 2056
O additional lines in msg header declare MIME content

type

From: alice@crepes.fr

MIME version To: bob@hamburger.edu
\ Subject: Picture of yummy crepe.
method used I MIME-Version: 1.0
to encode data Content-Transfer-Encoding: base64

multimedia data pContent-Type: image/jpeg

type, sub'rype, {_baseu encoded data

parameter declaration /

encoded data

2: Application Layer 39

MIME types

Content-Type: type/subtype; parameters

Text Video

0 example subtypes: plain, O example subtypes: mpeg,
html quicktime

Image Application

O example subtypes: jpeg, O other data that must be
gif processed by reader

before "viewable"
Audio O example subtypes:

O exampe subtypes: basic msword, octet-stream

(8-bit mu-law encoded),
32kadpem (32 kbps
coding)

2: Application Layer 40

Multipart Type

From: alice@crepes.fr

To: bob@hamburger.edu

Subject: Picture of yummy crepe.

MIME-Version: 1.0

Content-Type: multipart/mixed; boundary=StartOfNextPart

—--StartOfNextPart
Dear Bob, Please find a picture of a crepej
—--StartOfNextPart

Content-Transfer-Encoding: base64
Content-Type: image/jpeg

base64 encoded data

—-StartOfNextPart
Do you want the reciple?]

2: Application Layer 41

Mail access protocols

: TP P \
gs? an SM 4 SM & access -
< : protocol |agent]
0000o 00000
sender’s mail receiver's mail
server server
O SMTP: delivery/storage to receiver’s server
O Mail access protocol: retrieval from server
O POP: Post Office Protocol [RFC 1939]
+ authorization (agent <-->server) and download
O IMAP: Internet Mail Access Protocol [RFC 1730]
- more features (more complex)
+ manipulation of stored msgs on server
O HTTP: Hotmail , Yahoo! Mail, etc.

2: Application Layer

4

DNS: Domain Name System

People: many identifiers:
O SSN, name, passport #
Internet hosts, routers:

O IP address (32 bit) -
used for addressing
datagrams

O “name”, eg.,
gaia.cs.umass.edu - used
by humans

Q: map between IP
addresses and name ?

Domain Name System:

O distributed database
implemented in hierarchy of
many name servers

O application-layer protocol
host, routers, name servers to
communicate to resolve names
(address/name translation)

O note: core Internet
function, implemented as
application-layer protocol

O complexity at network's
“edge”

2: Application Layer 43

DNS name servers

Why not centralize DNS?
0 single point of failure
O traffic volume

0 distant centralized
database

0 maintenance

doesn't scale!

O no server has all name-
to-IP address mappings
local name servers:
o each ISP, company has
local (default) name server
O host DNS query first goes
to local name server
authoritative hame server:
O for a host: stores that
host's IP address, name
O can perform name/address
translation for that host's
name

2: Application Layer 44

DNS: Root name servers

O contacted by local hame server that can not resolve name

0 root name server:

O contacts authoritative name server if nhame mapping not known

O gets mapping

O returns mapping to local name server

aNsl Hemdon, VA

 PSinet Herndon, VA

d U Manyland College Park, MD
9 DISA Vienna, VA

h ARL Aberdeen, MD

& NASA Mt View, CA
1 Internet Software . Palo Alto, |
oA

b USC-IS! Marina del Rey, CA
I ICANN Marina el Rey, CA

K RIPE London
i NORDUnet Stockholm

m WIDE Tokyo

13 root name
servers worldwide

2: Application Layer 45

Simple DNS example

root name server

host surf.eurecom. fr
wants IP address of
gaia.cs.umass.edu

. contacts its local DNS
server, dns.eurecom. fr

—

n

.dns.eurecom. fr contacts
root name server, if
necessary

. root hame server contacts
authoritative name server,
dns.umass.edu, if
necessary

w

AN\
- g

Al
local name server authorititive name server
dns. .fr dns.umass.edu

e
(

requesting host

gaia.cs.umass.edu

surf.eurecom.fr

2: Application Layer 46

DNS example

Root name server:

O may hot know
authoritative name
server

0 may know
intermediate name
server: who to
contact to find
authoritative name
server

requesting host
surf.eurecom.fr

root name server

Pat
& -

Al | 4
local name server intermediate name server
dns.eurecom. fr

dns.umass.edu

4y15
1] s

authoritative name server
dns.cs.umass.edu

gaia.cs.umass.edu

2: Application Layer 47

DNS: iterated qu

eries root name server
&7

recursive query:

O puts burden of name
resolution on
contacted name
server

O heavy load?

iterated query:

0 contacted server
replies with name of
server to contact

0 "I don't know this
name, but ask this
server”

requesting host
surf.eurecom.fr

2 77 iterated query
3

o ——g

Al | 4
local name server intermediate name server
dns.eurecom. fr

1 8

authoritative name server
dns.cs.umass.edu

gaia.cs.umass.edu

2: Application Layer 48

DNS: caching and updating records

0 once (any) name server learns mapping, it caches
mapping
O cache entries timeout (disappear) after some
time
O update/notify mechanisms under design by IETF
o RFC 2136
O http://www.ietf.org/html.charters/dnsind-charter. html

2: Application Layer 49

DNS records

DNS: distributed db storing resource records (RR)

’ RR for'ma‘r: (name, value, type,ttl)

0 Type=A 0 Type=CNAME
O name is hosthame O name is alias hame for some
O value is IP address “cannonical” (the real) name
A Type=NS www . ibm.com is really

. . servereast.backup2.ibm.com
O name is domain (e.g.

foo.com)
O value is IP address of 4 Type=MX

authoritative name

server for this domain

O value is cannonical hame

O value is name of mailserver
associated with name

2: Application Layer 50

DNS protocol, messages

DNS protocol : guery and reply messages, both with
same message format

identification flags
msg header

; e X number of questions | number of answerRRs | 12 bytes
0 identification: 16 bit #

for query, reply to query | numberof autority RRs | number o additional RRs

uses same #

a ﬂclgs: (variable number of questions)
O query or reply o
o recursion desired (variable number of resource records)
O recursion available ey

o reply is authoritative {variable number of resource records)

additional information
(variable number of resource records)

2: Application Layer 51

DNS protocol, messages

identification flags
Name, type fields [T [T ..
for a query

number of authority RRs | number of additional RRs

. A s
RRs in reponse eratlonaber o cuestors)
to query o
{variable number of resource records)
records for o
- _ autort
authoritative servers T (varisble number ofresource records)

Ly additional information
(variable number of resolrce recards)

additional “helpful" _—]

info that may be used

2: Application Layer 52

Socket programming

Goal: learn how to build client/server application that
communicate using sockets

Socket APT ~ socket
O introduced in BSD4.1 UNIX, a host-local
1981 app//taf/bn-cren;fed
O explicitly created, used, OS-controlled interface
released by apps (a “door") into which
O client/server paradigm application process can
O two types of transport both send and

receive messages to/from
another application
process

service via socket APL:
O unreliable datagram

O reliable, byte stream-
oriented

2: Application Layer 53

Socket-programming using TCP

Socket: a door between application process and end-
end-transport protocol (UDP or TCP)

TCP service: reliable transfer of bytes from one
process to another

Al
process
socket’
TCP with| | controlled by
buffers,| | operating

controlled by
application
developer

controlled by
applicaﬁont
developer

controlled by —

operatin i
psysTeng\ internet variables| | system
host or host or
server server

2: Application Layer 54

Socket programming with TCP

Client must contact server O When contacted by client,
O server process must first server TCP creates new
be running socket for server process to

O server must have created communicate with client
socket (door) that O allows server to talk with
welcomes client's contact multiple clients

O source port numbers
used to distinguish
clients (more in Chap 3)

Client contacts server by:

O creating client-local TCP
socket

0 specifying IP address, port application viewpoint
number of server process

O When client creates
socket: client TCP
establishes connection to
server TCP

TCP provides reliable, in-order
transfer of bytes (‘pipe”)
between client and server

2: Application Layer 55

Stream jargon

0 A stream is a sequence of
characters that flow into
or out of a process.

0 Aninput stream is
attached to some input
source for the process, eg,
keyboard or sockeft.

O Anoufput stream is
attached to an output
source, eg, monitor or
socket.

2: Application Layer 56

Socket programming with TCP

keyboard monitor

el
Client
process

Example client-server app:

1) client reads line from
standard input (inFromUser
stream) , sends to server via
socket (outToServer
stream)

2) server reads line from socket

3) server converts line to
uppercase, sends back to
client

4) client reads, prints modified
line from socket
(inFromServer stream)

[ioFromUser

f—

output
stream

input
stream

ouiToServer

inFromServer

client TCP

socket =3

socket

tonetwork fromnetwork

2: Application Layer 57

Client/server socket interaction: TCP

Server (running on hostid) Client

create socket,
port=x, for
incoming request:
welcomeSocket =

ServerSocket()

. ‘ . TCP
wait for incoming
connection request
connectionSocket =
welcomeSocket.accept()

¢ send request using
read request from / clientSocket
connectionSocket
write reply to
connectionSocket \ read reply from

- ————— - create socket,

connection setup ~ connect to hostid, port=x
clientSocket =
Socket()

* clientSocket
close ‘
connectionSocket close

clientSocket

2: Application Layer 58

Example: Java client (TCP)

import java.io.*;
import java.net.”;
class TCPClient {

public static void main(String argv([]) throws Exception

String sentence;
String modifiedSentence;

Create .
BufferedReader inFromUser =

input stream
np new BufferedReader(new InputStreamReader(System.in));
Create’
client socket, Socket clientSocket = new Socket("hostname”, 6789);
connect to server

Create DataOutputStream outToServer =
output stream new DataOutputStream(clientSocket.getOutputStream());

attached to socket
2: Application Layer 59

Example: Java client (TCP), cont.

input stream new BufferedReader(new

Create BufferedReader inFromServer =
attached to socket InputStreamReader(clientSocket.getinputStream()));

sentence = inFromUser.readLine();
Send line .
+o server outToServer.writeBytes(sentence + \n');
Read line modifiedSentence = inFromServer.readLine();
from server.
System.out.printin("FROM SERVER: " + modifiedSentence);

clientSocket.close();

2: Application Layer 60

10

Example: Java server (TCP)

import java.io.”;
import java.net.*;

class TCPServer {
public static void main(String argv[]) throws Exception

String clientSentence;

Create String capitalizedSentence;
welcoming socket
at port 6789

Wait, on welcoming while(true) {
socket for contact Socket connectionSocket = welcomeSocket.accept();

by client,

—» ServerSocket welcomeSocket = new ServerSocket(6789);

. BufferedReader inFromClient =
Create inpuf new BufferedReader(new
stream, attached InputStreamReader(connectionSocket.getinputStream()));
to sockert,

2: Application Layer 61

Socket programming with UDP

UDP: no “connection” between
client and server

O no handshaking

0 sender explicitly attaches application viewpoint
IP address and port of . .
destination to each packet UDP provides unreliable transfer

of groups of bytes ("datagrams”)

O server must extract IP between client and server

address, port of sender

Example: Java server (TCP), cont

Create output
stream, attached

DataOutputStream outToClient =
to socket

new DataOutputStream(connectionSocket.getOutputStream());

Read in line
from ;oclle’rl—' clientSentence = inFromClient.readLine();

capitalizedSentence = clientSentence.toUpperCase() + \n';

Wereite out line

to socket —> outToClient.writeBytes(capitalizedSentence);

}
} End of while loop,
loop back and wait for
another client connection

2: Application Layer 62

from received packet

UDP: transmitted data may be
received out of order, or
lost

2: Application Layer 63

Client/server socket interaction: UDP

Server (running on hostid) Client

create socket,
port=x, for
incoming request:
serverSocket =
DatagramSocket()

create socket,
clientSocket =
DatagramSocket()

g Create, address (hostid, port=x,

send datagram request
read roguest from using clientSocket

serverSocket

write reply to
serverSocket \
specifying client read reply from
host address, clientSocket
port number close *

L | clientSocket

2: Application Layer 64

Example: Java client (UDP)

keyboard monitor

inFromUser

Client
Input: receives
process packet (TCP
Output: sends r‘eceive:i “byte
packet (TCP senN stream")
“byte stream”) uoP uop

packet packet

sendPacket

receivePackel

client UDP

socket uor

Socket

tonetwork from network

2: Application Layer 65

Example: Java client (UDP)

import java.io.*;
import java.net.*;
class UDPClient {
public static void main(String args[]) throws Exception
Create

1.
input stream—» g fferedReader inFromUser =
CreaTe] new BufferedReader(new InputStreamReader(System.in));

client socket] DatagramSocket clientSocket = new DatagramSocket();

Translate
hostname to IP InetAddress IPAddress = InetAddress.getByName("hostname");
address using DNS

byte[] sendData = new byte[1024];
byte[] receiveData = new byte[1024];
String sentence = inFromUser.readLine();
sendData = sentence.getBytes();
2: Application Layer 66

11

Example: Java client (UDP), cont.

Create datagram
with data-to-send,| DatagramPacket sendPacket =

length, IP addr, port| new DatagramPacket(sendData, sendData.length, IPAddress, 9876);

Send datagram| clientSocket.send(sendPacket);
to server
DatagramPacket receivePacket =

new DatagramPacket(receiveData, receiveData.length);

Read datagram . ’ .
from segr‘ver‘ clientSocket.receive(receivePacket);

String modifiedSentence =

new String(receivePacket.getData());

System.out.printin("FROM SERVER:" + modifiedSentence);
clientSocket.close();

}

2: Application Layer 67

Example: Java server (UDP)

import java.io.”;
import java.net.*;

class UDPServer {
public static void main(String args][]) throws Exception

Create ({
datagram socket .
at port 9876 — DatagramSocket serverSocket = new DatagramSocket(9876);

byte[] receiveData = new byte[1024];
byte[] sendData = new byte[1024];

while(true)

— DatagramPacket receivePacket =
new DatagramPacket(receiveData, receiveData.length);

Receive)| serverSocket.receive(receivePacket);
datagram|

2: Application Layer 68

Create space for
received datagram

Example: Java server (UDP), cont

String sentence = new String(receivePacket.getData());
Get IP addr .
port #, 0{|—> InetAddress IPAddress = receivePacket.getAddress();
sender f iyt port = receivePacket.getPort();
String capitalizedSentence = sentence.toUpperCase();

sendData = capitalizedSentence.getBytes();

Create datagram

to send to client — DatagramPacket sendPacket =

new DatagramPacket(sendData, sendData.length, IPAddress,
port);

to socket| }
}
} End of while loop,
loop back and wait for
another datagram

Werite out
datagram [serverSocket.send(sendPacket);

2: Application Layer 69

Building a simple Web server

0 handles one HTTP O after creating server,
request you can request file
O accepts the request using a browser (eg IE
O parses header explorer) .
O obtains requested file D See Text for details
from server's file
system
0 creates HTTP response
message:
O header lines + file
0 sends response to client

2: Application Layer 70

Socket programming: references

C-language tutorial (audio/slides):
0 "Unix Network Programming” (J. Kurose),
http://manic.cs.umass.edu/~amldemo/courseware/intro.

Java-tutorials:

o “All About Sockets" (Sun tutorial),
http://www.javaworld.com/ javaworld/jw-12-1996/jw-12-
sockets.html

O “Socket Programming in Java: a tutorial "
http://www.javaworld.com/ javaworld/jw-12-1996/jw-12-
sockets.html

2: Application Layer 71

Web caches (proxy server)

Goal: satisfy client request without involving origin server

0 user sets browser: Web origin
accesses via cache server

O browser sends all HTTP Proxy
~.
requests to cache @ &

O object in cache: cache
returns object

O else cache requests
object from origin
server, then returns
object to client

client

origin
server

2: Application Layer 72

12

More about Web caching

O Cache acts as both client Why Web caching?

and server O Reduce response time for
0O Cache canh do up-to-date client request.

check using Tf-modified- 4§ podyce traffic on an

Sl“Ice HT::P T;ade}r ra institution's access link.

O lLssue: should cache Take B
risk and deliver cached u] InTerne"r‘ dens”e with caches
enables “poor” content

object without checking? . X
o Heuristics are used providers to effectively
\ deliver content

O Typically cache is installed
by ISP (university,
company, residential ISP)

2: Application Layer 73

Caching example (1)

Assumptions

O average object size = 100,000
bits

O avg. request rate from
institution's browser to origin
serves = 15/sec

0O delay from institutional router
to any origin server and back
to router =2 sec

Consequences

O utilization on LAN = 15%

O utilization on access link = 100%

O ftotal delay = Internet delay +
access delay + LAN delay

= 2 sec + minutes + milliseconds

4 ..

origin

T @ servers
@‘ public 4

Internet 3‘

1.5 Mbps
access link

institutional
network 10 Mbps LAN

institutional
cache

2: Application Layer 74

Caching example (2)

. . origin
Possible solution @ @ @ servers
0 increase bandwidth of access @

public
Internet @

link to, say, 10 Mbps

Consequences

O utilization on LAN = 15% ==}
O utilization on access link = 15%

0O Total delay = Internet delay +
access delay + LAN delay
= 2 sec + msecs + msecs
O often a costly upgrade 10 Mbps LAN

10 Mbps
access link

institutional

institutional
cache

2: Application Layer 75

Caching example (3)

Install cache

O suppose hit rate is .4

Consequence

O 40% requests will be satisfied
almost immediately

0 60% requests satisfied by
origin server

O utilization of access link
reduced to 60%, resulting in
negligible delays (say 10 msec)

O ftotal delay = Internet delay +

access delay + LAN delay

.6*2 sec + .6*.01 secs +

milliseconds < 1.3 secs

@ origin

@ servers
public

Internet @

1.5 Mbps
access link

institutional
network 10 Mbps LAN

institutional
cache

2: Application Layer 76

Content distribution nhetworks (CDNs)

origin server
in North America

0O The content providers are
the CDN customers.

Content replication
O CDN company installs

hundreds of CDN servers CDN distribution node

throughout Internet @
O in lower-tier ISPs, close
to users / l \
O CDN replicates its customers' @ @
content in CDN servers.
When provider updates CDN server
content, CDN updates in'S. America CDN server ED;;EFVEF

servers in Europe

2: Application Layer 77

HTTP request for

CDN example @ o ot sporssports el

Origin server

@ ————@——> @EEy DNS query for www.cdn.com
CDNs authoritative

DNS server

HTTP request for
www.cdn.com/www.foo.com/sports/ruth.gif

Nearby
CDN server

origin server

0 www.foo.com

O distributes HTML
O Replaces:

htp://www.foo.com/sports.ruth. gif
with

CDN company
O cdn.com

o distributes gif files

0 uses its authoritative
DNS server to route
redirect requests

http://www.cdn.com/www.foo.com/sports/ruth. gif

2: Application Layer 78

13

More about CDNs

routing requests not just Web pages
0 CDN creates a "map”, O streaming stored

indicating distances audio/video
from leaf ISPs and O streaming real-time
CDN nodes audio/video

O when query arrives at o CDN nodes create
authoritative DNS application-layer
server: overlay network

O server determines ISP
from which query
originates

O uses "map" fo determine
best CDN server

2: Application Layer 79

P2P file sharing

Example

O Alice runs P2P client
application on her
notebook computer

O Intermittently
connects to Internet;
gets new IP address
for each connhection

O Asks for "Hey Jude"

0 Application displays
other peers that have
copy of Hey Jude.

0 Alice chooses onhe of
the peers, Bob.

0 File is copied from
Bob's PC to Alice's
notebook: HTTP

0 While Alice downloads,
other users uploading
from Alice.

O Alice's peer is both a
Web client and a
transient Web server.

All peers are servers =
highly scalable!

2: Application Layer 80

P2P: centralized directory

original "Napster” design ., cized
1) when peer connects, it ~ drectory server
informs central server:
O IP address
O content
2) Alice queries for "Hey
Jude"
3) Alice requests file from
Bob

Alice fiﬁg
g

2: Application Layer 81

P2P: problems with centralized directory

0 Single point of failure

O Performance
bottleneck

O Copyright
infringement

file transfer is
decentralized, but
locating content is
highly decentralized

2: Application Layer 82

P2P: decentralized directory

O Each peer is either a
group leader or
assigned to a group
leader.

0 Group leader tracks
the content in all its
children. .

0 Peer queries group .
leader; group leader
may query other group
leaders. @ oroupoacerpoor

neighoring relationships

® ordinary peer

2: Application Layer 83

More about decentralized directory

overlay network

O peers are nodes

O edges between peers
and their group leaders

O edges between some
pairs of group leaders

0 virtual neighbors

bootstrap node

0 connecting peer is
either assigned to a
group leader or
designated as leader

advantages of approach
0 no centralized directory
server
O location service
distributed over peers
o more difficult to shut
down
disadvantages of approach
O bootstrap node needed
O group leaders can get
overloaded

2: Application Layer 84

14

P2P: Query flooding

0 Gnutella
O no hierarchy

O use bootstrap node to
learn about others

O join message

O Send query to neighbors
0 Neighbors forward query

O If queried peer has
object, it sends message
back to querying peer

2: Application Layer 85

P2P: more on query flooding

Pros

O peers have similar
responsibilities: no
group leaders

O highly decentralized

0 no peer maintains
directory info

Cons

0 excessive query
traffic

0 query radius: may not
have content when
present

O bootstrap node

0 maintenance of overlay
network

2: Application Layer 86

15

