
1

Software Design and UML

Logistics

• Syllabus / Student Info Forms
– For those not here yesterday

• LDAP database
– Everyone check e-mail listing?
– Will send e-mail after this class.

Plan for today

• Building a software system
– Software Development Cycle
– Documenting your design using UML

Software Development Cycle

• Process for software development
– People management
– Work management
– Team management

• Caveat: These processes are merely
guidelines
– Your actual mileage may vary!

Software Development Cycle
• Gather Requirements

– Find out what the user needs
• System Analysis

– Express these needs formally in system terms
• Design

– Design a high level solution
• Implementation

– Turn solution into code
• Testing

– Verify that the solution works
• Maintenance

– Iterate the cycle

Software Development Cycle

• Problem Domain
– Gather Requirements / System Analysis

• Solution domain
– Design / Implementation
– Note: no code until implementation!

2

Software Development Cycle

• Testing
– Unit testing
– Integration testing
– System testing

– Reviews
• Requirements / Design / Code

Software Development Cycle

• Maintainance
– Modifications – iterate over complete cycle

• Note: This is just one methodology for
software developments, there are others
(e.g. eXtreme Programming).

• Questions?

Unified Modeling Language

• From the UML FAQ:
– “The Unified Modeling Language is a third-

generation method for specifying, visualizing,
and documenting the artifacts of an object-
oriented system under development.”

– Booch, Jacobson, Rumbaugh (the Three
Amigos)

• All three now work at Rational Software

Unified Modeling Language

• UML is a language for describing models.
– Describes what a system is supposed to do but

not how it should be implement.
– Analysis and Design NOT Implementation.

– CASE tools can generate code from well
specified designs.

Unified Modeling Language

• Major Components
– Entities

• things in your model

– Relationships
• associations between things in the model

– Diagrams
• Graphical representation of elements and relationships that

present different views of the system.
• Often presented as a graph (shapes connected by arrows).

Unified Modeling Language

• UML defines numerous types of diagrams
• In this class we will focus on the following:

– Class diagrams
• Illustrates classes/objects and relationships

– Use Case diagrams
• Illustrates user interaction (scenerios) with system

– Sequence Diagrams
• Illustrates objects interaction over time in realizing a

use case.

3

Class Diagrams

• Classes and Objects
– All objects have the following:

• Name – how an object is identified
• Attributes – defines an object’s state
• Operations – defines an object’s behavior

– Classes
• Categories of objects with the same set of attributes

and behavior
• Objects are instantiations of classes

Class Diagrams – Classes

Circle

Radius:Integer { radius > 0 }

Center: Point = (10,10)

Display() : Boolean

setPosition (pos:Point)

setRadius (r:Integer)

name

attributes

operations

constraint

Initial value

parameters

Return type

Class Diagrams -- Relationships

• Associations
– Relationship between different objects of different

classes
– Associations can have the following:

• Name – identifies the association type
• Multiplicity – indicates how many objects can participate in

the association
• Roles – Meaning of classes involved

– Represented by lines connecting associated classes

Class Diagrams -- Associations

Company Person
employs0..1 0..*

Employer Employee

name
multiplicites

roles

Class Diagrams -- Relationships

• Aggregation
– Specifies a “whole”/”part” relationship”
– has-a relationship

• Indicated by a line with an unfilled diamond at the
end

– Composition – strong aggregation where the
part generally does not exist without the whole.

• Indicated by a line with a filled diamond at the end

Class Diagrams -- Aggregation

Car Wheels
has1 3..4

Invoice Invoice Item
has1 1..*

Employee

Aggregation

Composition

4

Class Diagrams -- Relationships

• Generalization
– is-A relationship
– Indicates inheritance

• Indicated by a line with an open triangle.

• Dependency
– Relationship where a change in one element requires a

change in the other
• Instantiation Relationships
• Temporary associations (operation arguments)
• Creator / Createe relationship
• Indicated by a dotted line

Class Diagrams -- Generalization

Shape

Circle Rectangle

Square

Class Diagrams -- Dependency

Car myCar
Instance of

GUI

DisplayForm()
Form

Class Diagram – Summary

Class Diagrams -- Summary

• Classes / Objects – represented as boxes
– Name / Attributes / Operations

• Relationships – lines connecting boxes
– Associations
– Aggregations / Composition
– Generalization
– Dependency

• Questions?

Use Case Diagram

• Use case – Scenario about system use from a
external user perspective.
– Extremely useful tool for requirements gathering and

analysis.
– Use cases are indicated by an oval

– Actor – Entity located outside of a system that is
involved in the interaction with the system in a use
case.

– Actors are indicated by a stick person.

5

Use Case Diagram Use Case – Relationships

• Use Cases can have relationships with other
use cases
– Include –use case that is performed during the

course of another use case.
– Extend – Adding extra steps to an already

existing use case.

Use Case – Relationships Programming by Contract

• Introduced by Bertrand Meyer, the creator of
Eiffel.

• Creates a contract between the software developer
and software user
– Every feature, or method, starts with a precondition that

must be satisfied by the consumer of the routine.
– each feature ends with postconditions which the

supplier guarantees to be true (if and only if the
preconditions were met).

– each class has an invariant which must be satisfied after
any changes to the object represented by the class.

Use Case -- Documentation

• To be documented with a use case:
– Sequence of steps that occur in the scenario
– Preconditions
– Postconditions
– Variations and alternative scenarios

Use Case – Register for courses

• Precondition:
– Student has been assigned a valid id/password

• Postcondition:
– Student becomes registered and can attend

class.

6

Use Case – Register for courses

• Sequence of events
– Student logs into system
– System extracts student data from DB
– Based on this data, system presents a menu of

courses student can take
– Student chooses course
– Notification sent to registrar to add student to

course.

Use Case – Register for courses

• Alternative scenarios
– Student database unavailable
– Courses cannot be retrieved
– Course chosen by student is full.
– Communication to registrar is unavailable.

Use case diagram – Summary

• Use case – Scenario about system use from a external user
perspective.
– Ovals in diagram

• Actor – Entity located outside of a system that is involved
in the interaction with the system in a use case.
– Stick person

• Relationships
– Extend / Include

• Documentation
• Questions?

Summary

• Software Design and Life Cycle
– Requirements / Analysis / Design /

Implementation / Test / Maintenance
• UML

– Class Diagrams
– Use Case Diagrams
– Sequence Diagrams (next time)

