Turing Machines

Homework

- Homework
 - From textbook:
 - Exercise 8.2.1 b,c
 - Exercise 8.2.2 a,b (use JFLAP)
 - Exercise 8.2.5 a,b (hint: try running on JFLAP)
 - Exercise 8.4.1 a,b (implement using JFLAP)
 - Additional problems:
 - Draw a TM that computes the following function. Assume that the TM represents n as 0^n (use JFLAP)
 - $F(x) = 2^x$

Just a reminder

- Next Tuesday
 - Exam 2

Before We Start

- Any questions?

Languages

- The $64,000 Question
 - What is a language?
 - What is a class of languages?

Now our picture looks like

We’re going to start to look at languages out here
The Turing Machine

- We investigate the next classes of languages by first considering the machine
 - Turing Machine
 - Developed by Alan Turing in 1936
 - More than just recognizing languages
 - Foundation for modern theory of computation

More about Turing

- “Breaking the Code”
 - Movie about the personal life of Alan Turing
 - Death was by cyanide poisoning (some say suicide)
 - Turing worked as a code breaker for the Allies during WWII.
 - Turing eventually tried to build his machine and apply it to mathematics, code breaking, and games (chess).
 - Was beat to the punch by vonNeumann

Theory Hall of Fame

- Alan Turing
 - 1912 – 1954
 - PhD – Princeton (1938)
 - Research
 - Cambridge and Manchester U.
 - National Physical Lab, UK
 - Creator of the Turing Test

The Turing Machine

- Some history
 - Created in response to Kurt Godel’s 1931 proof that formal mathematics was incomplete
 - There exists logical statements that cannot be proven by using formal deduction from a set of rules
 - Good Reading: “Godel, Escher, Bach” by Hofstadter
 - Turing set out to define a process by which it can be decided whether a given mathematical can be proven or not.

Theory Hall of Fame

- Kurt Godel
 - 1906 -- 1978
 - b. Brünn, Austria-Hungary
 - PhD – University of Vienna (1929)
 - Research
 - Princeton University
 - Godel’s Incompleteness Theorem

The Turing Machine

- Motivating idea
 - Build a theoretical a “human computer”
 - Likened to a human with a paper and pencil that can solve problems in an algorithmic way
 - The theoretical machine provides a means to determine:
 - If an algorithm or procedure exists for a given problem
 - What that algorithm or procedure looks like
 - How long would it take to run this algorithm or procedure.
The Church-Turing Thesis (1936)

- Any algorithmic procedure that can be carried out by a human or group of humans can be carried out by some Turing Machine"
 - Equating algorithm with running on a TM
 - Turing Machine is still a valid computational model for most modern computers.

Theory Hall of Fame

- **Alonso Church**
 - 1903 – 1995
 - b. Washington D.C.
 - PhD – Princeton (1927)
 - Mathematics Prof (1927 – 1967)
 - Advisor to both Turing and Kleene

Turing Machine

- A Machine consists of:
 - A state machine
 - An input tape
 - A movable r/w tape head
- A move of a Turing Machine
 - Read the character on the tape at the current position of the tape head
 - Change the character on the tape at the current position of the tape head
 - Move the tape head
 - Change the state of the machine based on current state and character read

Turing Machines

- Let’s formalize this
 - A Turing Machine M is a 7-tuple:
 - M = (Q, Σ, Γ, δ, q₀, B, F) where
 - Q = a finite set of states
 - Σ = input alphabet (strings to be used as input)
 - Γ = tape alphabet (chars that can be written onto the tape. Includes symbols from Σ)
 - q₀ = start state
 - B = the blank symbol (B ∈ Γ, B ∉ Σ)
 - F = set of final states
 - δ = transition function
- Transition function:
 - δ: Q x Γ → Q x Γ x {R, L}

 - Input:
 - Current state
 - Tape symbol read at current position of tape head
 - Output:
 - State in which to move the machine
 - Tape symbol to write at current position of tape head
 - Direction in which to move the tape head (R = right, L = left)
Turing Machines

- Transition Function
 - Symbol at current tape head position
 - Symbol to write at the current head position
 - Direction in which to move the tape head

Turing Machine

- Configuration of a TM
 - Gives the current "configuration" of a TM

Turing Machine

- Initial configuration:
 - To run an input string x on a TM,
 - Start in the starting state
 - Place the string on the tape
 - Place the head at the start of this string:

Turing Machine

- Accepting a string
 - A string x is accepted by a TM, if
 - Starting in the initial configuration
 - With x on the input tape
 - The machine eventually ends up in an accepting state.
 - I.e.
 - \(q_0x \rightarrow^* \alpha \rho \beta \) and \(\rho \in F \)

Turing Machine

- TMs and halting
 - We say that a TM halts if
 - The machine has nowhere to go (at a state, reading a symbol where no transition is defined)
 - Without loss of generality, we can assume that a TM will always halt when in an accepting state.
 - Note that the TM can halt in a non-accepting state!
Turing Machine

- Running a Turing Machine
 - The execution of a TM can result in 3 possible cases:
 - The machine “halts” in an accepting state (ACCEPT)
 - The machine “halts” in a non-accepting state (REJECT)
 - The machine goes into an “infinite loop” (REJECT but keeps us guessing!)

TMs and Regular Languages

- Example
 - L = \{ x \in \{ a, b \}^* | x \text{ contains the substring } aba \}\}

TMs and Regular Languages

- Example
 - L = \{ x \in \{ a, b \}^* | x \text{ contains the substring } aba \}\}

 - Build a TM that mimics the FA that accepts this language

TMs and Regular Languages

- Do you think that JFLAP can handle TMs?
 - You bet!
Theory Hall of Fame

• **Susan Rodgers**
 – PhD – Purdue (1985)
 – CS Prof
 • RPI (1989-1994)
 • Duke (1995 – present)
 – Creator and keeper of JFLAP

TMs and Regular Languages

• **Example**
 – Observations
 • Like FAs TM tape head will always move to the right
 • Like FAs, TM will not write new chars onto the tape
 • Can enter final state even before the machine reads all the characters of x.

TMs and CFLs

• **Example**
 – L = \{ x \in \{0,1\}^* \mid x = 0^i1^i \}
 – Basic idea:
 • Find leftmost 0 and change it to an X
 • Find the rightmost 1 and change to a Y
 • Continue to match until all 0s have been changed to Xs
 – If every X has a matching Y, accept
 – If can’t find a matching 1 reject
 – If is leftover, reject

TMs and Context Free Language

– L = \{ x \in \{0,1\}^* \mid x = 0^i1^i \}
– States:
 • q_0 – at the leftmost blank
 • q_1 – read leftmost 0, looking for rightmost 1
 • q_2 – found and matched rightmost 1 / go back to leftmost 0
 • q_3 – no more 0’s, all 0s matched with 1s / see if we get to end of string without reading a 1
 • q_4 – accept and halt

TMs and Context Free Language

– JFLAP…go to work!!
TMs and Context Free Language

• Another?

• Let’s try our old friend palindrome
 – \(L = \{ x \in \{a, b\}^* \mid x = x^r \} \)

TMs and Context Free Language

• Example
 – \(L = \{ x \in \{a, b\}^* \mid x = x^r \} \)
 – Basic idea:
 • Compare the first character with the last character.
 • If they match compare the second character with the second to last character
 • If they match, compare the 3rd character with the 3rd to last character
 • And so on...
 • For \(x \) in \(\text{pal} \), eventually we will end up with 0 or 1 unmatched characters.

TMs and Context Free Language

• Example
 – \(L = \{ x \in \{a, b\}^* \mid x = x^r \} \)
 – How to compare characters?
 • Read a character and replace it with blanks.
 • Move across the tape to first blank character
 • Check the character to the left
 – If it’s the character that you initially read in, replace it with a blank, move the tape head left until you reach the first blank character and so on.

TMs and Context Free Language

• Example
 – \(L = \{ x \in \{a, b\}^* \mid x = x^r \} \)
 – Halting condition:
 • If when you moved left/right after finding the first blank, the character found is a blank, we have found a palindrome!

TMs and Context Free Language

• Example
 – \(L = \{ x \in \{a, b\}^* \mid x = x^r \} \)
 – States:
 • \(q_1 \) – at the leftmost blank
 • \(q_2 \) – read an a, move right until you find a blank
 • \(q_3 \) – looking for an a, look left after finding rightmost blank
 • \(q_4 \) – matched first character read, move left till you find the leftmost blank
 • \(q_5 \) – read an b, move right until you find a blank
 • \(q_6 \) – looking for an b, look left after finding rightmost blank
TMs and Context Free Language

• Example
 – \(L = \{ x \in \{a, b\}^* | x = x^c \} \)

 – Let’s go to the video tape

Let’s try a non-context free language

• Example
 – \(L = \{ xx | x \in \{a, b\}^* \} \)

 – Basic idea
 • Find and mark the middle of the string
 • Compare characters starting from the start of the string with characters starting from the middle of the string.

Let’s try a non-context free language

• Example
 – \(L = \{ xx | x \in \{a, b\}^* \} \)

 – Finding the middle of the string
 • Convert first character to it’s upper case equiv.
 • Move all the way to the right to the last lower case character and change it to upper case.
 • Move all the way back left to the first lower case character and change it to upper case
 • And so on.

Let’s try a non-context free language

• Once you’ve found the middle,
 – Convert the 1st half of the string back to lower case.
 – Start from the left of the tape
 • Match upper case chars in 1st half with lower case chars in the 2nd,
 • Replace a matched upper case char with blanks
 • Repeat until the 1st half of the string is all blank.

Let’s try a non-context free language

• Let’s go to the video tape
Turing Machines

- Questions?

- Let's break.