Chomsky Normal Form

Chomsky Normal Form

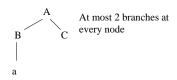
- · Chomsky Normal Form
 - A context free grammar is in Chomsky Normal Form (CNF) if every production is of the form:
 - $A \rightarrow BC$
 - $A \rightarrow a$
 - Where A,B, and C are variables and a is a terminal.

Theory Hall of Fame

- Noam Chomsky
 - The Grammar Guy
 - 1928 -
 - b. Philadelphia, PA
 - PhD UPenn (1955)
 - Linguistics
 - Prof at MIT (Linguistics) (1955 - present)
 - Probably more famous for his leftist political views.

Chomsky Normal Form

• If we can put a CFG into CNF, then we can calculate the "depth" of the longest branch of a parse tree for the derivation of a string.



Chomsky Normal Form

- 3 Step process:
 - 1. Remove ε Productions
 - 2. Remove Unit Productions
 - 3. Remove Useless Symbols

Removing ε -Productions

- A ϵ -Productions is a production of the form
 - $A \rightarrow \epsilon$
 - Basic idea
 - Very similar to removing ϵ transitions from a NFA- ϵ
 - Find the set of all variables A such that A⇒*ε (set of nullable variables)
 - For all productions that contain a nullable variable on the right hand side, add a production that eliminates the nullable from the right hand side

Removing ϵ -Productions

- We must be a bit careful here
 - If ϵ is in a CFL, then the production $S \to \epsilon$ must be in the production set.
 - The algorithm to be described will generate $L-\{\epsilon\}$

Removing ε -Productions

- Step 1: Find the set of nullable variables:
 - Example:
 - $S \rightarrow AB$
 - $A \rightarrow aAA \mid \epsilon$
 - $B \rightarrow bBB \mid \epsilon$
 - · All variables are nullable
 - A and B are nullable since $A \rightarrow \epsilon$ and $B \rightarrow \epsilon$
 - S is nullable since $S \to AB$ and A and B are nullable

Removing ϵ -Productions

- Step 2: Remove nullable variables
 - For all productions $A \to \beta$ where β contains nullable variables, add a new production with each nullable removed from β

Removing ε -Productions

Step 2: Remove nullable variables Example:

- $S \rightarrow AB$
- A \rightarrow aAA | ϵ
- B \rightarrow bBB | ϵ
- · All variables are nullable

Removing ϵ -Productions

- Step 2: Remove nullable variables Example:
 - Consider: $S \rightarrow AB$
 - Add to P: $S \rightarrow A$ and $S \rightarrow B$
 - Consider: A → aAA
 - Add to P: $A \rightarrow aA$ and $A \rightarrow a$
 - Consider: B → bBB
 - Add to P: B \rightarrow bB and B \rightarrow b

Removing ε -Productions

- Step 2: Remove nullable variables
 - Our grammar now looks like:
 - $S \rightarrow AB \mid A \mid B$
 - A \rightarrow aAA | aA | a | ϵ
 - B \rightarrow bBB | bB | b | ϵ

Removing ϵ -Productions

- Step 3: Remove your ε -Productions
 - Example:
 - Remove $A \to \epsilon$ and $B \to \epsilon$
 - Our final grammar looks like:
 - $\ S \rightarrow AB \mid A \mid B$
 - $-A \rightarrow aAA \mid aA \mid a$
 - $-B \rightarrow bBB \mid bB \mid b$
 - Questions?

Removing Unit Productions

- A Unit Productions is a production of the form
 - $A \rightarrow B$ where A and B are variable
 - Basic idea
 - Very similar to removing ϵ productions
 - For each variable A, find the set of all variables B such that A⇒* B by just following unit productions (A-derivable)
 - For all variables B that are A derivable and for all productions $B\to\alpha,$ add the production $A\to\alpha$

Removing Unit Productions

• Step 0: Remove ϵ -Productions using the previous algorithm.

Removing Unit Productions

- Step 1: For all variables A find the set of A-derivable variables:
 - Recursive definition of A-derivable
 - 1. If $A \rightarrow B$ then B is A-derivable
 - 2. If C is A derivable and C \rightarrow B (and B \neq A), then B is A derivable
 - 3. No other variables are A-derivable.

Removing Unit Productions

- Step 1: For all variables A find the set of Aderivable variables:
 - Example:
 - $S \rightarrow S + T \mid T$
 - $T \rightarrow T * F | F$
 - $F \rightarrow (S) \mid a$
 - Let's find the set of S-derivable variables:
 - $-\,$ T is S derivable since S $\rightarrow\,$ T
 - F is S derivable since $T \rightarrow F$ and T is S derivable

Removing Unit Productions

- Step 1: For all variables A find the set of Aderivable variables:
 - Example:
 - $S \rightarrow S + T \mid T$
 - $T \rightarrow T * F \mid F$
 - $F \rightarrow (S) \mid a$
 - S-derivable = $\{T, F\}$
 - T-derivable = $\{F\}$
 - F-derivable = \emptyset

Removing Unit Productions

Step 2: For each variable A, if B is Aderivable, for each non-unit production B
→ β, add the production A → β

Removing Unit Productions

- Step 2:
 - Example:
 - $S \rightarrow S + T \mid T$
 - $T \rightarrow T * F \mid F$
 - $F \rightarrow (S) \mid a$
 - S-derivable = $\{T, F\}$
 - T-derivable = $\{F\}$
 - Add to P: $S \rightarrow T * F, S \rightarrow (S) \mid a$
 - : T →(S) | a

Removing Unit Productions

- Step 2:
 - Our new grammar now looks like:
 - $S \rightarrow S + T \mid T * F \mid (S) \mid a \mid T$
 - $T \rightarrow T * F | (S) | a | F$
 - $F \rightarrow (S) \mid a$

Removing Unit Productions

- Step 3: Remove Unit Productions
 - Our final grammar looks like:
 - Our new grammar now looks like:
 - $S \rightarrow S + T \mid T * F \mid (S) \mid a$
 - $T \rightarrow T * F | (S) | a$
 - Remove $S \rightarrow T, T \rightarrow F$
 - Questions

Removing Useless Symbols

- A symbol X is <u>useful</u> for a grammar G = (V, T, P, S) if
 - $\ S \Rightarrow^* \alpha X \beta \Rightarrow^* w \ \ where \ w \in L(G)$
- In other words, a <u>useful symbol</u> will be used somewhere in the derivation of a string in the language.
- Any symbol that is not useful is <u>useless</u>.
- Useless symbols do not add to the language generated by a grammar, so it's okay to remove them.

Removing Useless Symbols

- Definitions:
 - We say a symbol X is generating if:
 - $X \Rightarrow^* w$ for some $w \in L(G)$
 - We say a symbol X is <u>reachable</u> if:
 - $S \Rightarrow^* \alpha X\beta$ for some α, β
- Symbols that are useful must be both generating and reachable.
 - Such symbols (and assoc. productions) can be removed

Removing useless symbols

- Algorithm:
 - 1. Eliminate all non generating symbols
 - 2. Eliminate all non reachable symbols from resultant grammar.

Removing useless symbols

- · Finding generating symbols
 - 1. All symbols in T are generating
 - 2. If $A \rightarrow \alpha$ and all symbols in α are generating, then A is generating.
 - 3. No other symbols are generating.

Removing useless symbols

- Finding reachable symbols
 - 1. S is reachable
 - 2. If A is reachable, and $A \rightarrow \alpha$, then all variables in α are reachable.

Removing Useless Symbols

• Example:

 $S \rightarrow AB \mid a$

 $A \rightarrow b$

B is useless since it is not generating Eliminate it

Removing useless symbols

• Example:

 $S \to a$

 $A \rightarrow b$

- Now A is not reachable, eliminate it!

 $S \rightarrow a$

Note that you must eliminate non-generating symbols before non-reachable symbols.

Recall our goal

- · Chomsky Normal Form
 - A context free grammar is in Chomsky Normal Form (CNF) if every production is of the form:
 - $A \rightarrow BC$
 - $A \rightarrow a$
 - Where A,B, and C are variables and a is a terminal.

Chomsky Normal Form

- Given a CFG G, there is an equivalent CFG, G' in Chomsky Normal form such that
 - $\ L(G') = L(G) \{\epsilon\}$

Chomsky Normal Form

- Step 1:
 - Remove ε -Productions
- Step 2:
 - Remove Unit Productions
- Step 3:
 - Remove useless symbols

Chomsky Normal Form

- After steps 1-3:
 - All productions are of the form:
 - $A \rightarrow a$ where A is a variable and a is a terminal
 - $A \to \beta$ where $\mid \beta \mid \; \geq 2$ and β contains variables and/or terminals.
 - Step 4: Derive terminals from new variables:
 - For all productions of the 2^{nd} type: $A \rightarrow \beta$, for all terminals a in β, create a new variable X_a
 - Add a new production $X_a \rightarrow a$
 - Replace a in β with X_a

Chomsky Normal Form

- Step 4:
 - Let's go back to our first example:
 - $-S \rightarrow AB \mid A \mid B$
 - $-A \rightarrow aAA \mid aA \mid a$
 - $-B \rightarrow bBB \mid bB \mid b$
 - Removing unit transitions:
 - $\ S \rightarrow AB \mid aAA \mid aA \mid a \mid bBB \mid bB \mid b$
 - $-A \rightarrow aAA \mid aA \mid a$
 - B \rightarrow bBB | bB | b
 - Note that S, A, and B are all useful.

Chomsky Normal Form

- Step 4:
 - Define new productions: $X_a \rightarrow a$ and $X_b \rightarrow b$ and replace instance of a with X_a , similarly for b
 - $\ S \rightarrow AB \mid aAA \mid aA \mid a \mid bBB \mid bB \mid b$
 - $-A \rightarrow aAA \mid aA \mid a$ $-B \rightarrow bBB \mid bB \mid b$
 - · New:
 - - $-\enspace S \rightarrow AB \mid X_aAA \mid X_aA \mid a \mid X_bBB \mid X_bB \mid b$
 - $\ A \mathop{\rightarrow} X_a \ AA \ | \ X_a \ A \ | \ a$
 - $B \rightarrow X_b BB \mid X_b B \mid b$
 - $\ X_a \! \to a$
 - $-X_b \rightarrow b$

Chomsky Normal Form

- After steps 1-4:
 - All productions are of the form:
 - A \rightarrow a where A is a variable and a is a terminal
 - A \rightarrow β where $|\beta| \ge 2$ and β contains only variables.
 - - For all productions of type 2 where $|\beta| > 2$, replace the production with a series of new productions each having exactly 2 variables on the right
 - Best illustrated with an example

Chomsky Normal Form

- Step 4:
 - The production:
 - A \rightarrow BCDBCE
 - Would be replaced with
 - $A \rightarrow BY_1$
 - $Y_1 \rightarrow CY_2$
 - $Y_2 \rightarrow DY_3$
 - $Y_3 \rightarrow BY_4$
 - $Y_4 \rightarrow CE$

Chomsky Normal Form

- Step 4:
 - Back to our example
 - $S \rightarrow AB \mid \underline{X_a} \underline{AA} \mid X_a A \mid a \mid \underline{X_b} \underline{BB} \mid X_b B \mid b$
 - $\ A \to \underline{X_{\underline{a}} \, AA} \mid X_{\underline{a}} \, A \mid a$
 - $-B \rightarrow \underline{X_b BB} \mid X_b B \mid b$ $-X_a \rightarrow a$
 - $-X_b \rightarrow b$
 - Add productions
 - $Y_1 \rightarrow AA$
 - $Y_2 \rightarrow BB$

Chomsky Normal Form

- Step 4:
 - Our final grammar
 - $\ S \rightarrow AB \mid \underline{X}_{\underline{a}} \ Y_1 \mid X_a \ A \mid a \mid X_b \ Y_{\underline{2}} \mid X_b \ B \mid b$
 - $-A \rightarrow X_a Y_1 | X_a A | a$ $-B \rightarrow X_b Y_2 | X_b B | b$

 - $Y_1 \rightarrow AA$
 - $\underbrace{Y_2}_{-} \rightarrow BB$ $\underbrace{X_a}_{-} \rightarrow a$ $\underbrace{X_b}_{-} \rightarrow b$

 - Questions

CNF

- Any grammar can be placed into CNF
- Why bother?
 - Remember that awful CFG we generated last week?
 - Simplification
 - Gives upper limit on size of parse tree
 - Pumping Lemma will need this.

Questions?

- Next time
 - The Return of the pumping lemma

