Pushdown Automata

Homework

- Homework #3
 - Will return today
- Homework #4
 - due today
- Homework #5
 - Assigned today

Homework #5

- Homework 5 (due 10/18)
 - From textbook
 - Exercise 6.2.1 b,c / Exercise 6.2.2 b (use JFLAP)
 - Exercise 6.2.5
 - Exercise 6.3.2 (by empty stack or final state)
 - Exercise 6.3.4
 - Exercise 6.4.1a,b,c

Final Exam

- Finals schedule has been posted
 - Tuesday, November 15th
 - 2:45pm – 4:45pm
 - 70-1620

Plan

- Today
 - Pushdown Automata
- Thursday
 - CFG <-> PDA Equivalence

Languages

- Recall.
 - What is a language?
 - What is a class of languages?
Context Free Languages

- Context Free Languages (CFL) is the next class of languages outside of Regular Languages:
 - Means for defining: Context Free Grammar
 - Machine for accepting: Pushdown Automata

Plan for today

- Introduction to Pushdown Automata

Pushdown Automata

- A pushdown automata (PDA) is essentially:
 - An NFA-ε with a stack
 - A “move” of a PDA will depend upon
 - Current state of the machine
 - Current symbol being read in
 - Current symbol popped off the top of the stack
 - With each “move”, the machine can
 - Move into a new state
 - Push symbols on to the stack

Pushdown Automata

- The stack
 - The stack has its own alphabet
 - Included in this alphabet is a special symbol used to indicate an empty stack. (Z₀)
 - This special symbol should not be removed from the stack.
 - Note that the basic PDA is non-deterministic!

Pushdown Automata

- Let’s formalize this:
 - A pushdown automata (PDA) is a 7-tuple:
 - \(M = (Q, \Sigma, \Gamma, \delta, q₀, Z₀, F) \) where
 - \(Q \) = finite set of states
 - \(\Sigma \) = tape alphabet
 - \(\Gamma \) = stack alphabet (may have symbols in common w/ \(\Sigma \))
 - \(q₀ \in Q \) = start state
 - \(Z₀ \in \Gamma \) = initial stack symbol
 - \(F \subseteq Q \) = set of accepting states
 - \(\delta \) = transition function
Pushdown Automata

- About this transition function δ:
 - During a move of a PDA:
 - At most one character is read from the input tape
 - ε transitions are okay
 - The topmost character is popped from the stack
 - The machine will move to a new state based on:
 - The character read from the tape
 - The character popped off the stack
 - The current state of the machine
 - 0 or more symbols from the stack alphabet are pushed onto the stack.

- Formally:
 - $\delta : Q \times (\Sigma \cup \{\varepsilon\}) \times \Gamma \rightarrow (\text{finite subsets of } Q \times \Gamma^*)$
 - Domain:
 - $Q = \text{state}$
 - $(\Sigma \cup \{\varepsilon\}) = \text{symbol read off tape}$
 - $\Gamma = \text{symbol popped off stack}$
 - Range:
 - $Q = \text{new state}$
 - $\Gamma^* = \text{symbols pushed onto the stack}$

- Example:
 - $\delta(q, a, a) = (p, aa)$
 - Meaning:
 - When in state q,
 - Reading in an a from the tape
 - With an a popped off the stack
 - The machine will
 - Go into state p
 - Push the string "aa" onto the stack

- Configuration of a PDA
 - Gives the current “configuration” of the machine
 - (p, x, α) where
 - p is the current state
 - x is a string indicating what remains to be read on the tape
 - α is the current contents of the stack.

- Move of a PDA:
 - We can describe a single move of a PDA:
 - $(q, x, \alpha) \rightarrow (p, y, \beta)$
 - If:
 - $x = ay, \alpha = \gamma X, \beta = YX$
 - $\delta(q, x, y)$ includes (p, Y) or
 - $\delta(q, \varepsilon, y)$ includes (p, Y) and $x = y$.

- Moves of a PDA
 - We can write:
 - $(q, x, \alpha) \rightarrow^* (p, y, \beta)$
 - If
 - You can get from one configuration to the other by applying 0 or more moves.
Pushdown Automata

• Strings accepted by a PDA by Final State
 – Start at \((q_0, x, Z_0)\)
 • Start state \(q_0\)
 • \(X\) on the input tape
 • Empty stack
 – End with \((q, \varepsilon, \beta)\)
 • End in an accepting state \((q \in F)\)
 • All characters of \(x\) have been read
 • Some string on the stack (doesn’t matter what).

Pushdown Automata

• The language accepted by a PDA
 – Let \(M = (Q, \Sigma, \Gamma, q_0, Z_0, A, \delta)\) be a PDA
 – The language accepted by \(M\) by final state,
 • Denoted \(L(M)\) is
 • The set of all strings \(x\) that are accepted by \(M\) by final state

Pushdown Automata

• Let’s look at an example:
 – \(L = \{ xcx^r \mid x \in \{a,b\}^* \}\)
 – The PDA will have 4 states
 • State 0 (initial) : reading before the ‘c’
 • State 1: read the ‘c’
 • State 2: read after ‘c’, comparing chars
 • State 3: (accepting): move only after all chars read and stack empty
PDA Example

- Transition for abcba
 - \((q_0, \text{abcb}, Z) \rightarrow (q_0, \text{bcba}, a) \) // push a
 - \(\rightarrow (q_0, \text{cba}, ba) \) // push b
 - \(\rightarrow (q_1, \text{ba}, ba) \) // goto 1
 - \(\rightarrow (q_2, \text{ba}, ba) \) // \(\varepsilon \) trans
 - \(\rightarrow (q_2, \text{a}, \text{a}) \) // pop b
 - \(\rightarrow (q_2, \varepsilon, Z) \) // pop a
 - \(\rightarrow (q_3, \varepsilon, Z) \) // Accept!

- Transition for abcb
 - \((q_0, \text{abcb}, Z) \rightarrow (q_0, \text{bcb}, a) \) // push a
 - \(\rightarrow (q_0, \text{cb}, ba) \) // push b
 - \(\rightarrow (q_1, \text{b}, ba) \) // goto 1
 - \(\rightarrow (q_2, \text{b}, ba) \) // \(\varepsilon \) trans
 - \(\rightarrow (q_2, \varepsilon, \text{a}) \) // pop b
 - Nowhere to go // Reject!

Pushdown Automata

- I bet you’re wondering if JFLAP can handle PDAs!
 - Yes, it can…
 - Let’s take a look.

- Let’s look at another example:
 - \(L = \{ xx' | x \in \{ \text{a,b} \}^* \} \)
 - Basic idea for building a PDA
 - Much like last example, except
 - This time we don’t know when to start popping and comparing
 - Since PDAs are non-deterministic, this is not a problem

Pushdown Automata

- Let’s look at another example:
 - \(L = \{ xx' | x \in \{ \text{a,b} \}^* \} \)
 - The PDA will have 3 states
 - State 0 (initial): reading before the center of string
 - State 1: read after center of string, comparing chars
 - State 2 (accepting): after all chars read, stack should be empty
 - The machine can choose to go from state 0 to state 1 at any time:
 - Will result in many “wrong” set of moves
 - All you need is one “right” set of moves for a string to be accepted.
PDA Example

• Let’s see a bad transition set for abba
 – \((q_0, \text{abba}, Z) \mapsto (q_0, bba, a)\) \// push a
 – \(\mapsto (q_0, ba, ba)\) \// push b
 – \(\mapsto (q_0, a, bba)\) \// push b
 – \(\mapsto (q_1, a, bba)\) \// \(\varepsilon\) trans
 – Nowhere to go \// Reject!

PDA Example

• Let’s see a good transition set for abba
 – \((q_0, \text{abba}, Z) \mapsto (q_0, bba, a)\) \// push a
 – \(\mapsto (q_0, ba, a)\) \// push b
 – \(\mapsto (q_1, ba, ba)\) \// \(\varepsilon\) trans
 – \(\mapsto (q_1, a, a)\) \// pop b
 – \(\mapsto (q_1, \varepsilon, Z)\) \// pop a
 – \(\mapsto (q_2, \varepsilon, Z)\) \// Accept!

Pushdown Automata

• “Let’s go to the video tape”
 – Actually JFLAP…

Deterministic PDAs

• As mentioned before
 – Our basic PDA in non-deterministic
 – We can define a Deterministic PDA (DPDA) as follows:
 • Let \(M = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)\) be a PDA
 • \(M\) is deterministic if:
 – \(\delta(q, a, X)\) has at most one element
 – \(\text{If } \delta(q, c, X) \neq \emptyset \text{ then } \delta(q, a, X) = \emptyset \text{ for all } a \in \Sigma\)

Deterministic PDAs

• In other words:
 – There is no configuration where the machine has a “choice” of moves
 • Each transition has at most 1 element.
 • If you can make a \(\varepsilon\)-transition from a state with a given symbol on the stack,
 – You cannot make that same transition on any tape input symbol.
Deterministic PDAs

• A language \(L \) is a deterministic context-free language (DCFL) if there is a DPA that accepts \(L \).

PDA Example

• Example:
 \[L = \{ x \in \{ a, b \}^* \mid n_a(x) > n_b(x) \} \]

 – First using a PDA:
 • Let the stack store the “excess” of one symbol over another
 – If more \(a \)’s have been read than \(b \)’s, \(a \)’s will be on the stack, and
 via versa
 – If \(a \) is on the stack and you read a \(b \), simple match the \(a \) with the
 \(b \).
 – If \(a \) is on the stack and you read an \(a \), we have one more extra \(a \) –
 Push it on the stack.
 – An empty stack means the number of \(a \)’s and \(b \)’s are equal.

PDA Example

• Example:
 \[L = \{ x \in \{ a, b \}^* \mid n_a(x) > n_b(x) \} \]

 – The PDA will have 2 states:
 • State 0 (start) : where all the work gets done
 • State 1 (accepting) : one you’re in here, the machine
 stops.
 – The machine can “choose” to go into state 1 on
 \(a \in \) transition whenever an \(a \) is on the stack.

PDA Example

• Example:
 \[L = \{ x \in \{ a, b \}^* \mid n_a(x) > n_b(x) \} \]

 – Removing the non-determinism :
 • Let the stack store 1 minus the “excess” of one
 symbol over another
 • The state will determine whether you have excess
 \(a \)’s or excess \(b \)’s

PDA Example

• Example:
 \[L = \{ x \in \{ a, b \}^* \mid n_a(x) > n_b(x) \} \]

 – The PDA will have 2 states:
 • State 0 (start) : when \(n_a(x) \leq n_b(x) \)
 – Equality or surplus of \(b \)’s
 • State 1 (accepting) : when \(n_a(x) > n_b(x) \)
 – Surplus of \(a \)’s
PDA Example

- Example:
 \[L = \{ x \in \{ a, b \}^* \mid n_a(x) > n_b(x) \} \]

Now you might be wondering…

We know that all DCFLs are CFLs

It can be shown…

- That the language pal:
 \[\text{pal} = \{ x \in \{ a, b \}^* \mid x = x^r \} \]

- Cannot be accepted by any DPDA.

It can also be shown

- That all regular languages can be accepted by a DPDA.
 - Since an DFA is essentially a DPDA that doesn’t make use of the stack.

Now our picture looks like

Why DPDAs are important

- A compiler may wish to implement a PDA in software to parse a program given by a given grammar
- DPDAs and ambiguity
 - If L can be accepted by a DPDA, then L can be expressed by an unambiguous CFG
 - Not visa versa
Determinism vs. Non-Determinism

• Comparing FAs and PDAs
 – DPDAs allow for ε-transitions
 – DPDAs allow for no moves
 – FAs and NFAs are equivalent
 – PDAs and DPDAs are not equivalent

Questions

Pushdown Automata

• Strings accepted by a PDA by Final State
 – Start at (q_0, x, Z_0)
 • Start state q_0
 • X on the input tape
 • Empty stack
 – End with (q, ε, β)
 • End in an accepting state $q \in F$
 • All characters of x have been read
 • Some string on the stack (doesn’t matter what).

• Strings accepted by a PDA by Final State
 – Let $M = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$ be a PDA
 – x is accepted by M if
 $(q_0, x, Z_0) \rightarrow^* (q, \varepsilon, \beta)$
 • Where
 – $q \in Q$
 – $\beta \in \Gamma^*$

• Strings accepted by a PDA by Empty Stack
 – Start at (q_0, x, Z_0)
 • Start state q_0
 • X on the input tape
 • Empty stack
 – End with $(q, \varepsilon, \varepsilon)$
 • End in any state
 • All characters of x have been read
 • Stack is empty

Pushdown Automata

• The language accepted by a PDA
 – Let $M = (Q, \Sigma, \Gamma, q_0, Z_0, A, \delta)$ be a PDA
 – The language accepted by M by final state,
 • Denoted $L(M)$ is
 • The set of all strings x that are accepted by M by final state
 – The language accepted by M by empty stack,
 • Denoted $N(M)$ is
 • The set of all strings x that are accepted by M by empty stack
 • We will show that all languages accepted by a PDA by final state will be accepted by an equivalent PDA by empty stack and visa versa
Final State vs. Empty Stack

- The two means by which a PDA can accept are equivalent wrt the class of languages accepted
 - Given a PDA \(M \) such that \(L = L(M) \), there exists a PDA \(M' \) such that \(L = N(M') \)
 - Given a PDA \(M \) such that \(L = N(M) \), there exists a PDA \(M' \) such that \(L = L(M') \)

Final State \(\rightarrow \) Empty Stack

Accept by Empty Stack

- Final State \(\rightarrow \) Empty Stack
 - Basic idea
 - Transitions of \(P_N \) will mimic those of \(P_f \)
 - Create a new state in \(P_N \) that will empty the stack.
 - The machine can move into this new state whenever the machine is in an accepting state of \(P_f \)

Accept by Empty Stack

- Final State \(\rightarrow \) Empty Stack
 - We must be careful though
 - \(P_f \) may crash when the stack is empty.
 - In those cases we need to assure that \(P_N \) does not accept
 - To solve this:
 - Create a new empty stack symbol \(X_0 \) which is placed on the stack before \(P_f \) s empty stack marker (\(Z_0 \))
 - \(Z_0 \) will only be popped by the new “stack emptying state
 - The first move of \(P_N \) will be to place \(Z_0X_0 \) on \(P_N \) stack.

Final State \(\rightarrow \) Empty Stack

- \(P_N = (Q, \Sigma, \Gamma, \delta_N, q_0, Z_0, F) \)

Accept by Empty Stack

- Final State \(\rightarrow \) Empty Stack
 - For example:
 - Start \(P_f \)
 - \(P_f \) \(\rightarrow \) \(P_f \)
 - \(P_f \) \(\rightarrow \) \(P_f \)
 - \(P_f \) \(\rightarrow \) \(P_f \)
 - \(P_f \) \(\rightarrow \) \(P_f \)
Empty Stack \rightarrow Final State

- Empty Stack \rightarrow Final State
 - Given a PDA $P_N = (Q, \Sigma, \Gamma, \delta_N, q_0, Z_0)$ and $L = \mathbb{N}(P_N)$ then there exists a PDA P_F such that $L = L(P_F)$

 - We will build such a PDA

Empty Stack \rightarrow Final State

- Empty Stack \rightarrow Final State
 - Basic idea
 - Transitions of P_F will mimic those of P_N
 - Create a new state in P_F that will serve as the final state.
 - The machine can move into this new state whenever P_N empties its stack.

Empty Stack \rightarrow Final State

- Empty Stack \rightarrow Final State
 - $P_F = (\cdot Q \cup \{p_o, p_f\}, \cdot \Sigma, \cdot \Gamma \cup \{X_0\}, \cdot \delta_F, \cdot p_0, \cdot X_0, \cdot p_f)$

Accept by Empty Stack

- Empty Stack \rightarrow Final State

Final State vs. Empty Stack

- We showed: Final State \rightarrow Empty Stack.
 - Given a PDA that accepts by final state, we can build a PDA that accepts by empty stack.

- We showed: Empty Stack \rightarrow Final State
 - Given a PDA that accepts by empty stack, we can build a PDA that accepts by final state.

 - Showing that PDAs that accept by empty stack and PDAs that accept by final state are equivalent.

Questions?

Next time

- PDAs…the perfect machine for CFLs…