Before We Start

- Any questions?

Plan for today

- Minimization of DFAs

Languages

- Recall.
 - What is a language?
 - What is a class of languages?

Regular Languages

- What we know about regular languages
 - Described using regular expressions
 - Set operations of union, concatenation, Kleene Star
 - Kleene Theorem
 - A language is regular iff there exists a finite automata that accepts the language

Homework

- Homework #1 returned
- Homework #2 Due today
- Homework #3
 - Exercise 4.1.1a,c,e pg 129
 - Exercise 4.2.15 pg 148
 - Exercise 4.3.2 pg 153
 - Exercise 4.3.4 pg 154
 - Exercise 4.4.2 (a,b) pg 164
Minimal Finite Automata

- Motivation
 - Consider the question:
 - Do two finite automata accept the same language?
 - To answer, we introduce the Minimal Finite Automata (MFA)
 - Given a DFA, create a new DFA with the minimal number of states possible that accepts the same language.

- Plan
 - Equivalent states of a DFA
 - Devise an algorithm (based on equivalent states) that creates a minimal DFA from an DFA
 - Some examples

Minimal Finite Automata

- Equivalent States
 - $M = (Q, \Sigma, q_0, \delta, F)$
 - Two states, $p, q \in Q$ are said to be equivalent if
 - For all strings $x \in \Sigma^*$
 - (p, x) is in an accepting state if (q, x) is in an accepting state
 - If (p, x) is an accepting state then (q, x) is an accepting state
 - If (p, x) is not an accepting state then (q, x) is not an accepting state
 - If two states are not equivalent, they are said to be distinguishable.

- In building a MFA, equivalent states can be combined.
Minimal Finite Automata

Example

- States C and G are distinguishable
 - One is accepting, one is not
- States A and G are distinguishable
 - $(A,\{0,1\}) = C$ (accepting)
 - $(G,\{0,1\}) = E$ (not-accepting)

- States B and H are equivalent
 - $\delta(B,1) = \delta(H,1) = C$
 - $\delta(B,0) = \delta(H,0) = G$
 - $\delta(B,0x) = \delta(H,0x) = E$ for any x
 - So for any x, (B,x) and (H,x) will either both be accepting or both not be accepted.

- States A and E are equivalent
 - $\delta(A,1) = \delta(E,1) = F$
 - $\delta(A,0) = B$, $\delta(E,0) = H$
 - B and H are equivalent
 - $(A,0x)$ and $(E,0x)$ will either both be accepting or both be non-accepting.

Recursive algorithm to find distinguishable states:

- Consider pairs $\{p,q\}$
- For each pair we will determine whether p is distinguishable from q
- Said another way, for each pair $\{p,q\}$ we will determine if p is not equivalent to q.

Recursive algorithm

- **Base case:**
 - If p is accepting and q is non-accepting then $\{p,q\}$ is distinguishable
- **Induction**
 - For some pair $\{p,q\}$ if
 - $\delta(p,a) = r$ and $\delta(q,a) = s$ and
 - (r,s) is distinguishable then
 - $\{p,q\}$ is distinguishable

[Diagram of a finite automaton]
Minimal Finite Automata

• Let’s take a look at this induction step
 – If \(r = \delta(p,a) \) and \(s = \delta(q,a) \) are distinguishable, then there is a string \(x \) such that \(\delta(r,x) \) is accepting and \(\delta(s,x) \) is not, or visa-versa
 – Then for \(x \), \(\delta(p,ax) \) is accepting and \(\delta(q,ax) \) is not, or visa-versa.
 – We found a string, \(ax \) such that \(\delta(p,ax) \) is accepting and \(\delta(q,ax) \) is not (or visa-versa), thus \(\{p,q\} \) are distinguishable.

Minimal Finite Automata

• This algorithm is sometime best visualized by using a table with each table cell representing a pair of states. A mark in a table cell indicates that the two states of the pair are distinguishable.

Minimal Finite Automata

• Distinguishable table

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Minimal Finite Automata

• Restatement of algorithm
 – For all pairs \(\{p,q\} \) such that \(p \) is accepting and \(q \) is not, mark the equivalent cell in the table.
 – Consider each pair \(\{p,q\} \) not yet marked.
 • Determine \(r = \delta(p,a) \) and \(s = \delta(q,a) \) for each \(a \) in \(\Sigma \).
 • If \(\{r,s\} \) is marked, then mark \(\{p,q\} \)
 – Repeat until no further cells are marked during an iteration of the algorithm

Minimal Finite Automata

• Example

\[
\begin{align*}
\delta(A, 0) &= B \\
\delta(A, 1) &= F \\
\delta(B, 0) &= G \\
\delta(B, 1) &= C \\
\delta(C, 0) &= A \\
\delta(C, 1) &= C \\
\delta(D, 0) &= C \\
\delta(D, 1) &= G \\
\delta(E, 0) &= H \\
\delta(E, 1) &= F \\
\delta(F, 0) &= C \\
\delta(F, 1) &= G \\
\delta(G, 0) &= G \\
\delta(G, 1) &= E \\
\delta(H, 0) &= G \\
\delta(H, 1) &= C
\end{align*}
\]
Minimal Finite Automata
• Let’s try on our example

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>

Minimal Finite Automata
• Once our table is complete
 – All unmarked cells correspond to state pairs that are not-distinguishable, i.e. they are equivalent
 – Combine equivalent states into one
 – Transitions from equivalent states should map to equivalent states

Minimal Finite Automata
• Combine H and B

Minimal Finite Automata
• Combine E and A

Minimal Finite Automata
• Combine D and F
Minimal Finite Automata

• What have we done?
 – Defined the notion of equivalent states
 – Developed a recursive algorithm to determine which states in an FA are equivalent
 – Combine equivalent states to create FA with minimal number of states.

 – Questions?

Minimal Finite Automata

• Let’s revisit the question:
 – Given 2 specifications of regular languages, do the specifications describe the same language.
 • Create a MFA for each language
 • Compare the MFAs on a state by state basis.

For the mathematically minded

• Let’s go back to our Discrete Math
 – Relation
 • Defines relationship between objects
 • Usually given as an ordered pair, (x, y) where x, y ∈ some Set
 – Equivalence relation
 • Reflective: (a, a)
 • Symmetric: if (a,b) then (b,a)
 • Transitive: if (a,b) and (b,c) then (a,c)

For the mathematically minded

• Equivalence relations
 – The nice thing about equivalence relations
 • It partitions the elements of your set into a number of distinct and disjoint subsets.
 • Each subset is called an equivalence class

For the mathematically minded

• MFA and Equivalence Classes
 – State equivalence can be shown to be an equivalence relation on a language.
 – This relation partitions the strings of L into a number of equivalence classes.
 – Each equivalence class corresponds to a state in the MFA.

Minimal Finite Automata

• Questions?

 • Let’s take a break