Pushdown Automata

Homework

• Homework #3
 – Will return Tuesday
• Homework #4
 – Early submission: Due today
 • Will return on Tuesday
 – Regular submission: Due Tuesday
• Homework #5
 – PDAs
 – Will be assigned Tues, October 19.

Final Exam

• Good news – bad news
 – Good news
 • Final exam schedule is out
 – Even better news
 • CS Theory Exam is on Thursday, Nov 18th
 – Bad news
 • Exam is at 8am!!!!
• Thursday, November 18th, 8am, 70-3435

Plan

• Today
 – Pushdown Automata
 – CFG (Chapter 5) Problem Session
• Tuesday
 – CFG <-> PDA Equivalence
 – Midterm Review
• Thursday
 – Midterm

Languages

• Recall.
 – What is a language?
 – What is a class of languages?

Context Free Languages

• Context Free Languages(CFL) is the next class of languages outside of Regular Languages:
 – Means for defining: Context Free Grammar
 – Machine for accepting: Pushdown Automata
Plan for today

- Introduction to Pushdown Automata

Pushdown Automata

- A pushdown automata (PDA) is essentially:
 - An NFA-ε with a stack
 - A “move” of a PDA will depend upon
 - Current state of the machine
 - Current symbol being read in
 - Current symbol popped off the top of the stack
 - With each “move”, the machine can
 - Move into a new state
 - Push symbols on to the stack

Pushdown Automata

- The stack
 - The stack has its own alphabet
 - Included in this alphabet is a special symbol used to indicate an empty stack. (Z₀)
 - This special symbol should not be removed from the stack.
 - Note that the basic PDA is non-deterministic!

Pushdown Automata

- Let’s formalize this:
 - A pushdown automata (PDA) is a 7-tuple:
 - $M = (Q, \Sigma, \Gamma, \delta, q₀, Z₀, F)$ where
 - Q = finite set of states
 - Σ = tape alphabet
 - Γ = stack alphabet (may have symbols in common w/ Σ)
 - $q₀ \in Q$ = start state
 - $Z₀ \in \Gamma$ = initial stack symbol
 - $F \subseteq Q$ = set of accepting states
 - δ = transition function

Pushdown Automata

- About this transition function δ:
 - During a move of a PDA:
 - At most one character is read from the input tape
 - ε transitions are okay
 - The topmost character is popped from the stack
 - The machine will move to a new state based on:
 - The character read from the tape
 - The character popped off the stack
 - The current state of the machine
 - 0 or more symbols from the stack alphabet are pushed onto the stack.
Pushdown Automata

- Formally:
 - $\delta: Q \times (\Sigma \cup \{\varepsilon\}) \times \Gamma \rightarrow (\text{finite subsets of } Q \times \Gamma^*)$
 - Domain:
 - $Q =$ state
 - $(\Sigma \cup \{\varepsilon\}) =$ symbol read off tape
 - $\Gamma =$ symbol popped off stack
 - Range:
 - $Q =$ new state
 - $\Gamma^* =$ symbols pushed onto the stack

Pushdown Automata

- Example:
 - $\delta(q, a, a) = (p, aa)$
 - Meaning:
 - When in state q,
 - Reading in an a from the tape
 - With an a popped off the stack
 - The machine will
 - Go into state p
 - Push the string “aa” onto the stack

Pushdown Automata

- Configuration of a PDA
 - Gives the current “configuration” of the machine
 - (p, x, α) where
 - $p =$ current state
 - $x =$ string indicating what remains to be read on the tape
 - $\alpha =$ current contents of the stack

Pushdown Automata

- Move of a PDA:
 - We can describe a single move of a PDA:
 - $(q, x, \alpha) \rightarrow (p, y, \beta)$
 - If:
 - $x = ay, \alpha = \gamma x, \beta = YX$
 - And
 - $\delta(q, x, \gamma)$ includes (p, Y) or
 - $\delta(q, \varepsilon, \gamma)$ includes (p, Y) and $x = y$.

Pushdown Automata

- Strings accepted by a PDA by Final State
 - Start at (q_0, x, Z_0)
 - Start state q_0
 - X on the input tape
 - Empty stack
 - End with (q, ε, β)
 - End in an accepting state $(q \in F)$
 - All characters of x have been read
 - Some string on the stack (doesn’t matter what).
Pushdown Automata

• Strings accepted by a PDA (Final State)
 – Let \(M = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F) \) be a PDA
 – \(x \) is accepted by \(M \) if
 • \((q_0, x, Z_0) \xrightarrow{a^*} (q, \varepsilon, \beta) \)
 • Where
 – \(q \in A \)
 – \(\beta \in \Gamma^* \)

Pushdown Automata

• Strings accepted by a PDA (Empty Stack)
 – Let \(M = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F) \) be a PDA
 – \(x \) is accepted by \(M \) if
 • \((q_0, x, Z_0) \xrightarrow{a^*} (q, \varepsilon, \varepsilon) \)
 • Where
 – \(q \in Q \)

Pushdown Automata

• The language accepted by a PDA
 – Let \(M = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, A) \) be a PDA
 – The language accepted by \(M \) by final state,
 • Denoted \(L(M) \) is
 • The set of all strings \(x \) that are accepted by \(M \) by final state
 – The language accepted by \(M \) by empty stack,
 • Denoted \(N(M) \) is
 • The set of all strings \(x \) that are accepted by \(M \) by empty stack
 • We will show next week that all languages accepted by a PDA by final state will be accepted by an equivalent PDA by empty stack and visa versa

Pushdown Automata

• Let’s look at an example:
 – \(L = \{ x \varepsilon x \varepsilon^* \mid x \in \{a, b \}^* \} \)
 • Basic idea for building a PDA
 • Read chars off the tape until you reach the ‘c’.
 • As you read chars push them on the stack
 • After reading the ‘c’, match the chars read with the chars popped off the stack until all chars are read
 • If at any point the char read does not match the char popped, the machine “crashes”

Pushdown Automata

• Let’s look at an example:
 – \(L = \{ x \varepsilon x \varepsilon^* \mid x \in \{a, b \}^* \} \)
 • The PDA will have 4 states
 • State 0 (initial) : reading before the ‘c’
 • State 1: read the ‘c’
 • State 2: read after ‘c’, comparing chars
 • State 3: (accepting): move only after all chars read and stack empty
Pushdown Automata

- Let’s look at an example:
 - \(L = \{ x x^r \mid x \in \{ a,b \}^* \} \)

- Transition for \(abcba \)
 - \((q_0, abcba, Z) \mapsto (q_0, cbba, a) \) // push a
 - \(\mapsto (q_0, cb, ba) \) // push b
 - \(\mapsto (q_1, b, ba) \) // goto 1
 - \(\mapsto (q_2, b, ba) \) // \(\epsilon\) trans
 - \(\mapsto (q_2, a, a) \) // pop b
 - \(\mapsto (q_3, a, Z) \) // pop a
 - \(\mapsto (q_3, \epsilon, Z) \) // Accept!

PDA Example

- Transition for \(abcb \)
 - \((q_0, abcb, Z) \mapsto (q_0, bcb, a) \) // push a
 - \(\mapsto (q_0, cb, ba) \) // push b
 - \(\mapsto (q_1, b, ba) \) // goto 1
 - \(\mapsto (q_2, b, ba) \) // \(\epsilon\) trans
 - \(\mapsto (q_2, a, a) \) // pop b
 - Nowhere to go // Reject!

Pushdown Automata

- I bet you’re wondering if JFLAP can handle PDAs!
 - Yes, it can…
 - Let’s take a look.

Pushdown Automata

- Let’s look at another example:
 - \(L = \{ x x^r \mid x \in \{ a,b \}^* \} \)

 - Basic idea for building a PDA
 - Much like last example, except
 - This time we don’t know when to start popping and comparing
 - Since PDAs are non-deterministic, this is not a problem
Pushdown Automata

- Let’s look at an example:
 - $L = \{ xx^r | x \in \{a, b\}^* \}$

\[
\begin{array}{l}
q_0 \quad q_1 \\
\text{b, Z} / bZ_a \\
\text{s, Z} / aZ_a \\
\text{b, b / b} \\
\end{array}
\]

PDA Example

- Let’s see a bad transition set for abba
 - $(q_0, abba, Z) \mapsto (q_0, bba, a)$ // push a
 - $\mapsto (q_0, ba, ba)$ // push b
 - $\mapsto (q_1, a, bba)$ // push b
 - $\mapsto (q_1, a, bba)$ // ε trans
 - Nowhere to go // Reject!

PDA Example

- Let’s see a good transition set for abba
 - $(q_0, abba, Z) \mapsto (q_0, bba, a)$ // push a
 - $\mapsto (q_0, ba, ba)$ // push b
 - $\mapsto (q_1, ba, ba)$ // ε trans
 - $\mapsto (q_1, a, a)$ // pop b
 - $\mapsto (q_1, a, Z)$ // pop a
 - $\mapsto (q_2, Z)$ // Accept!

Deterministic PDAs

- As mentioned before
 - Our basic PDA in non-deterministic
 - We can define a Deterministic PDA (DPDA) as follows:
 \[\text{Let } M = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F) \text{ be a PDA}\]
 - M is deterministic if:
 1. $\delta(q, a, X)$ has at most one element
 2. If $\delta(q, c, X) \neq \emptyset$ then $\delta(q, a, X) = \emptyset$ for all $a \in \Sigma$

Deterministic PDAs

- In other words:
 - There is no configuration where the machine has a “choice” of moves
 - Each transition has at most 1 element.
 - If you can make a ε -transition from a state with a given symbol on the stack, you cannot make that same transition on any tape input symbol.
Deterministic PDAs

- A language L is a **deterministic context-free language (DCFL)** if there is a DPA that accepts L.

PDA Example

- Example:
 - $L = \{ x \in \{a, b\}^* \mid n_a(x) > n_b(x) \}$

 - First using a PDA:
 - Let the stack store the “excess” of one symbol over another.
 - If more a's have been read than b's, a's will be on the stack, and vice versa.
 - If a is on the stack and you read a b, simple match the a with the b.
 - If a is on the stack and you read an a, we have one more extra a – Push it on the stack.
 - An empty stack means the number of a’s and b’s are equal.

- The PDA will have 2 states:
 - State 0 (start) : where all the work gets done
 - State 1 (accepting) : one you’re in here, the machine stops.
 - The machine can “choose” to go into state 1 on a ϵ transition whenever an a is on the stack.

- Removing the non-determinism:
 - Let the stack store 1 minus the “excess” of one symbol over another.
 - The state will determine whether you have excess a’s or excess b’s.

Non-determinism
PDA Example

- Example:
 \[L = \{ x \in \{ a, b \}^* | n_a(x) > n_b(x) \} \]

Now you might be wondering...

- We know that all DCFLs are CFLs.

It can be shown...

- That the language \(\text{pal} \):
 \[\text{pal} = \{ x \in \{ a, b \}^* | x = x^r \} \]

 - Cannot be accepted by any DPDA.

It can also be shown

- That all regular languages can be accepted by a DPDA.
 - Since an DFA is essentially a DPDA that doesn’t make use of the stack.

Now our picture looks like

Why DPDAs are important

- A compiler may wish to implement a PDA in software to parse a program given by a given grammar.
- DPDAs and ambiguity
 - If \(L \) can be accepted by a DPDA, then \(L \) can be expressed by an unambiguous CFG.
 - Not visa versa.
Determinism vs. Non-Determinism

- Comparing FAs and PDAs
 - DPDAs allow for ε-transitions
 - DPDAs allow for no moves
 - FAs and NFAs are equivalent
 - PDAs and DPDAs are not equivalent

Questions

Pushdown Automata

- Questions?

- Let’s break