Non deterministic finite automata
with ¢ transitions

Languages

* Recall.
— What is a language?

— What is a class of languages?

Finite Automata

 Consists of
— A set of states (Q)
— A start state (q,)

— A set of accepting states (F)
— Read symbols ()
— Transition function (3)

 Let’s recap

First there was the DFA

Deterministic Finite Automata

— For every state and every alphabet symbol there
is exactly one move that the machine can make.

-30:QxZ—>Q

— d is a total function: completely defined. l.e. it
is defined forallg e Qanda e X

Then, the NFA

Non-determinism

— When machine is in a given state and reads a
symbol, the machine will have a choice of
where to move to next.

— There may be states where, after reading a
given symbol, the machine has nowhere to go.

— Applying the transition function will give, not 1
state, but O or more states.

Non-Deterministic Finite Automata
(NFA)
* Transition function
— & is a function from Q x T to 2Q
— 3 (g, a) = subset of Q (possibly empty)

* And now...

Introducing...

» The newest in the FA family...

The Non deterministic finite automata with ¢
transitions (e-nra)

Nondeterministic Finite Automata with €
transitions (€-NFA)

 For both DFAs and NFAs, you must read a
symbol in order for the machine to make a
move.

« In Nondeterministic Finite Automata with ¢
transitions (e-Nra)

— Can make move without reading a symbol off
the read tape

— Such a move is called a ¢ transition

Nondeterministic Finite Automata with €
transitions (E-NFA)

« Example:
— Machine to accept decimal numbers

Nondeterministic Finite Automata with €
transitions (E-NFA)

« How does such a machine accept?

— A string will be accepted if there is at least one
sequence of state transitions on an input
(including ¢ transitions) that leaves the machine
in an accepting state.

Nondeterministic Finite Automata with €
transitions (E-NFA)

« Example:
—-3.45is accepted
- .5678
— 37 is rejected 0,1,.9

Nondeterministic Finite Automata with €
transitions (E-NFA)

» A Non-Deterministic Finite Automata with ¢
transitions is a 5-tuple (Q, X, q,, 8, F) where
— Q is afinite set (of states)
— X is a finite alphabet of symbols
- (, € Q is the start state
— F < Qs the set of accepting states

- s a function from Q x (£ U {&}) to 22 (transition
function)

Nondeterministic Finite Automata with €
transitions (€-NFA)

« Transition function

- & is a function from Q x (X U {&}) to 29
— 3 (g, a) = subset of Q (possibly empty)
— In our example

* 3 (dy, 0) = {ay, .}

* 8) ={a}

cd(,) =9

* 3 (0 &) ={a.}

Nondeterministic Finite Automata with €
transitions (€-NFA)

* Transition function on a string
— 4 isafunction from Q x =" to 20
— & (g, x) = subset of Q (possibly empty)

— Set of all states that the machine can be in,
upon following all possible paths on input x.

— We’ll need to consider all paths that include the
use of ¢ transitions

e-Closure

e ¢ closure

— Before defining the transition function on a
string (§ (9,x)), it is useful to first define what
is known as the ¢ closure.

— Given a set of states S, the ¢_closure will give
the set of states reachable from each state in S
using only ¢ transitions.

e-Closure

* ¢ closure: Recursive definition
-LetM=(Q, %, q,, 8, F) beae-NFA
— Let S be a subset of Q
— The ¢ closure, denotes ecLosg(S) is defined:

 For each state p €S, p € ECLOSE(S)

« For any q e ECLOSE(S), every element of 5(q, €)
ECLOSE(S)

« No other elements of Q are in ECLOSE(S)

e-Closure

* ¢-Closure : Algorithm

— Since we know that ecLosg(S) is finite, we can convert
the recursive definition to an algorithm.

— To find ecLosg(S) where S is a subset of Q
— LetT=S
— While (T does not change) do
« Add all elements of (g, €) whereq e T
- ECLOSE(S)=T

e-Closure

e Example

¢-Closure

* ¢ closure: Example
— Find ECLOSE({s}) in our example
- T={s} initial step
- T={s,w} add 3(s, €)
- T={s,w,qy} add (w, €)
- T={s,w, qq p,t} addd(q €)
- d(w, €) =d8(w, g) =
— We are done,
¢ ECLOSE({s}) =T ={s,w, qp, p.t}

Nondeterministic Finite Automata with €
transitions (€-NFA)

e Now lets define §

1. Foranyq€Q, §(q, ¢) = ECLOSE ({q})
2. ForanyyeZX'aeX qeQ

5(q,ya) = ECLOSE[U&(p,a)]

pes(a.y)

Set of all states obtained by applying § to all states in 3" (q,y) and
input a and taking the € closure of the result

Nondeterministic Finite Automata with €
transitions (E-NFA)

 Accepting a string
— A string x is accepted if running the machine on
input x, considering all paths, including the use

of ¢ transitions, puts the machine into one of
the accepting states

— Formally:
* X € " is accepted by M if
5 (U X)NF=D

Nondeterministic Finite Automata with €
transitions (E-NFA)

« Are the following strings accepted by the -
NFa below:
- aba
— ababa
— aaabbb

Nondeterministic Finite Automata with €
transitions (E-NFA)
« | bet that you’re asking...

— Can JFLAP handle e-nFas?
— Well, let’s check and see!

Nondeterministic Finite Automata with €
transitions (E-NFA)

 Language accepted by M
— The language accepted by M
e L(M)={x e =" | x is accepted by M }

« If L is a language over X, L is accepted by
M iff L = L(M).

— Forall x € L, x is accepted by M.
— Forall x ¢ L, x is rejected by M.

Nondeterministic Finite Automata with €
transitions (E-NFA)

* Why they’re a good idea
— Given a regular expression, it is far easier to
create an e-nra for the language described by
the expression than it is to create a plain old
DFA.
— It will also be essential when showing the Fas

accept the class of Regular Languages.

— Questions?

DFA / NFA / eNFa Equivalence

« Surprisingly enough
— € transitions to our NDFA does NOT give it any
additional language accepting power.

— DFAs and NFAs and e-nra are all equivalent
« Every language that can be accepted by a &-NFa can
also be accepted by an DFA which can also be

accepted by a NFA.

— Let’s show this

g-NFA -> DFA

» Given &-NFA find DFA
— LetE=(Qg, Z, 3¢, 0y, Fg) be a e-NFa then
* There exists a DFA, D= (Qp, Z, 8p, dp, Fp)
« Such that L(E) = L(D)

€-NFA -> DFA

 Basic idea
— Very similar to the subset construction

algorithm
* Recall that fora e-NFA, 3: Q X T — 20
« Use the states of D to represent subsets of Q.

€-NFA -> DFA

» Formal definition
-E= (QE! Ev 6E y qo, FE) be a e-NFA
— We define DFA, D= (Qp, Z, dp, dp, Fp)
. QD = 2QE

* dp = ECLOSE (qo)
* Fp = sets containing at least one state from Fg

€-NFA -> DFA

» Computing oy
-0p(S,a)forSe Qp,aecX

s LetS={pyps-..Pn}
« Compute the set of all states reachable from states in

S on input a using transitions from E.
{n k= Ude(poa)
i=1
* 85 (S, a) will be the union of the € closures of the

elements of {ry, ..., r,}
5p(S,a) = U ECLOSE(r;)
=

€-NFA -> DFA

&-NFA -> DFA
State g closure

Y {90 91}

o {a.}

gz {9}

03 {95,953

U4 {a.}

Js {gs}

&-NFA -> DFA

* Now we must show that D accepts the same
language as E

— Can be shown (using induction) that for all x €
o

* 5,00 = 5.2, %)

« See Theorem 2.22

€-NFA -> DFA

 Show that D and E recognize the same
language
— X is accepted by E iff 3E(q0, X)NFg=Q
— X is accepted by D iff gD(qD, X)NFe= O
— Thus,
« X is accepted by D iff x is accepted by E

» Questions?

DFA -> &-NFA

 The other direction is fairly straighforward.
— For any DFA, there is an equivalent NFA

— An NFA is nothing more than a e-NFA with no €
transitions. Thus

+ 5 (q, €) for all states q = I

What have we shown Questions?

For every DFA, there is an NFA that * Let’s take a break.
accepts the same language and visa versa

For every DFA, there is a &-NFA that accepts the
same language, and visa versa

Thus, for every NFA there is a E-NFA that accepts the
same language, and visa versa

DFAs, NFAs, and E-NFA s are equivalent!

