Non deterministic finite automata
with ε transitions

Finite Automata

- Consists of
- A set of states (Q)
- A start state (q_{o})
- A set of accepting states (F)
- Read symbols (Σ)
- Transition function (δ)
- Let's recap

Languages

- Recall.
- What is a language?
- What is a class of languages?

First there was the DFA

- Deterministic Finite Automata
- For every state and every alphabet symbol there is exactly one move that the machine can make.
$-\delta: Q \times \Sigma \rightarrow Q$
$-\delta$ is a total function: completely defined. I.e. it is defined for all $\mathrm{q} \in \mathrm{Q}$ and $\mathrm{a} \in \Sigma$

Then, the NFA

- Non-determinism

- When machine is in a given state and reads a symbol, the machine will have a choice of where to move to next.
- There may be states where, after reading a given symbol, the machine has nowhere to go.
- Applying the transition function will give, not 1 state, but 0 or more states.

Non-Deterministic Finite Automata
(NFA)

- Transition function
$-\delta$ is a function from $Q \times \Sigma$ to 2^{Q}
$-\delta(\mathrm{q}, \mathrm{a})=$ subset of Q (possibly empty)
- And now...
- Introducing...
- The newest in the FA family...
- The Non deterministic finite automata with ε transitions (ε-NFA)

Nondeterministic Finite Automata with \mathcal{E}

$$
\text { transitions (} \varepsilon \text {-NFA) }
$$

- For both DFAs and NFAs, you must read a symbol in order for the machine to make a move.
- In Nondeterministic Finite Automata with ε transitions (ε-NFA)
- Can make move without reading a symbol off the read tape
- Such a move is called a ε transition

Nondeterministic Finite Automata with \mathcal{E}

transitions (ε-NFA)

- Example:
- Machine to accept decimal numbers

Nondeterministic Finite Automata with \mathcal{E}

$$
\text { transitions (} \varepsilon \text {-NFA) }
$$

- How does such a machine accept?
- A string will be accepted if there is at least one sequence of state transitions on an input (including ε transitions) that leaves the machine in an accepting state.

Nondeterministic Finite Automata with $\boldsymbol{\varepsilon}$

 transitions (ε-NFA)- Example:
- -3.45 is accepted
- . 5678

Nondeterministic Finite Automata with ε

transitions (ε-NFA)

- A Non-Deterministic Finite Automata with ε transitions is a 5-tuple ($\left.Q, \Sigma, q_{o}, \delta, F\right)$ where
- Q is a finite set (of states)
$-\Sigma$ is a finite alphabet of symbols
$-q_{o} \in Q$ is the start state
- $F \subseteq Q$ is the set of accepting states
- δ is a function from $Q \times(\Sigma \cup\{\varepsilon\})$ to 2^{Q} (transition function)

Nondeterministic Finite Automata with \mathcal{E}

 transitions ($\mathcal{\varepsilon}-\mathrm{NFA})$- Transition function
$-\delta$ is a function from $Q \times(\Sigma \cup\{\varepsilon\})$ to 2^{Q}
$-\delta(\mathrm{q}, \mathrm{a})=$ subset of Q (possibly empty)
- In our example
- $\delta\left(\mathrm{q}_{1}, 0\right)=\left\{\mathrm{q}_{1}, \mathrm{q}_{4}\right\}$
- $\delta\left(q_{1},.\right)=\left\{q_{1}\right\}$
- $\delta\left(\mathrm{q}_{1},+\right)=\varnothing$
- $\delta\left(\mathrm{q}_{0}, \varepsilon\right)=\left\{\mathrm{q}_{1}\right\}$

Nondeterministic Finite Automata with \mathcal{E}

 transitions (ε-NFA)- Transition function on a string
$-\hat{\delta}$ is a function from $\mathrm{Q} \times \Sigma^{*}$ to 2^{Q}
$-\hat{\delta}(\mathrm{q}, \mathrm{x})=$ subset of Q (possibly empty)
- Set of all states that the machine can be in, upon following all possible paths on input x .
- We'll need to consider all paths that include the use of ε transitions

ε-Closure

- ε closure
- Before defining the transition function on a string ($\hat{\delta}(\mathrm{q}, \mathrm{x})$), it is useful to first define what is known as the ε closure.
- Given a set of states S, the ε closure will give the set of states reachable from each state in S using only ε transitions.

ε-Closure

- ε closure: Recursive definition
- Let $\mathrm{M}=\left(Q, \Sigma, q_{o}, \delta, F\right)$ be a ε-NFA
- Let S be a subset of Q
- The ε closure, denotes eclose(S) is defined:
- For each state $p \in S, p \in \operatorname{ECLOSE}(S)$
- For any $q \in \operatorname{ECLOSE}(S)$, every element of $\delta(q, \varepsilon) \in$ EClose(S)
- No other elements of Q are in $\operatorname{ECLOSE}(\mathrm{S})$

ε-Closure

- ε-Closure : Algorithm
- Since we know that ECLOSE(S) is finite, we can convert the recursive definition to an algorithm.
- To find eclose(S) where S is a subset of Q
- Let T = S
- While (T does not change) do
- Add all elements of $\delta(\mathrm{q}, \varepsilon)$ where $\mathrm{q} \in \mathrm{T}$
$-\operatorname{ECLOSE}(S)=T$

ε-Closure

- Example

ε-Closure

- ε closure: Example
- Find ECLOSE(\{s\}) in our example
- $\mathrm{T}=\{\mathrm{s}\} \quad$ initial step
$-\mathrm{T}=\{\mathrm{s}, \mathrm{w}\} \quad$ add $\delta(\mathrm{s}, \varepsilon)$
$-\mathrm{T}=\left\{\mathrm{s}, \mathrm{w}, \mathrm{q}_{0}\right\} \quad$ add $\delta(\mathrm{w}, \varepsilon)$
$-\mathrm{T}=\left\{\mathrm{s}, \mathrm{w}, \mathrm{q}_{0}, \mathrm{p}, \mathrm{t}\right\} \quad$ add $\delta\left(\mathrm{q}_{0}, \varepsilon\right)$
- $\quad \delta(\mathrm{w}, \varepsilon)=\delta(\mathrm{w}, \varepsilon)=\varnothing$
- We are done,
- $\operatorname{ECLOSE}(\{s\})=T=\left\{s, w, q_{0}, p, t\right\}$

Nondeterministic Finite Automata with \mathcal{E}

$$
\text { transitions (} \varepsilon \text {-NFA) }
$$

- Now lets define $\hat{\delta}$

1. For any $\mathrm{q} \in \mathrm{Q}, \hat{\delta}(\mathrm{q}, \varepsilon)=\operatorname{ECLOSE}(\{\mathrm{q}\})$
2. For any $\mathrm{y} \in \Sigma^{*}, \mathrm{a} \in \Sigma, \mathrm{q} \in \mathrm{Q}$

$$
\hat{\delta}(q, y a)=E C L O S E\left(\bigcup_{p \in \hat{\delta}(q, y)} \delta(p, a)\right)
$$

Set of all states obtained by applying δ to all states in $\delta^{*}(\mathrm{q}, \mathrm{y})$ and input a and taking the ε closure of the result

Nondeterministic Finite Automata with ε

 transitions (ε-NFA)- Accepting a string
- A string x is accepted if running the machine on input x, considering all paths, including the use of ε transitions, puts the machine into one of the accepting states
- Formally:
- $x \in \Sigma^{*}$ is accepted by M if
- $\hat{\delta}\left(\mathrm{q}_{0}, \mathrm{x}\right) \cap \mathrm{F} \neq \varnothing$

Nondeterministic Finite Automata with ε

 transitions (ε-NFA)- Are the following strings accepted by the ε nfa below:
- aba
- ababa
- aaabbb

Nondeterministic Finite Automata with \mathcal{E} transitions (\mathcal{E}-NFA)

- I bet that you're asking...
- Can JFLAP handle ε-NFAs?
- Well, let's check and see!

Nondeterministic Finite Automata with \mathcal{E}

 transitions (ε-NFA)- Language accepted by M
- The language accepted by M
- $L(M)=\left\{x \in \Sigma^{*} \mid x\right.$ is accepted by $\left.M\right\}$
- If L is a language over Σ, L is accepted by M iff $L=L(M)$.
- For all $x \in L$, x is accepted by M.
- For all $x \notin L$, x is rejected by M.

Nondeterministic Finite Automata with ε

 transitions (\mathcal{E}-NFA)- Why they're a good idea
- Given a regular expression, it is far easier to create an ε-NFA for the language described by the expression than it is to create a plain old DFA.
- It will also be essential when showing the Fas accept the class of Regular Languages.
- Questions?

DFA / NFA / ε-NFA Equivalence

- Surprisingly enough
$-\mathcal{E}$ transitions to our NDFA does NOT give it any additional language accepting power.
- DFAs and NFAs and ε-NFA are all equivalent
- Every language that can be accepted by a ε-NFA can also be accepted by an DFA which can also be accepted by a NFA.
- Let's show this

ε-NFA -> DFA

- Given ε-NFA find DFA
- Let $\mathrm{E}=\left(\mathrm{Q}_{\mathrm{E}}, \Sigma, \delta_{\mathrm{E}}, \mathrm{q}_{0}, \mathrm{~F}_{\mathrm{E}}\right)$ be a ε - NFA then
- There exists a DFA, $D=\left(Q_{D}, \Sigma, \delta_{D}, q_{D}, F_{D}\right)$
- Such that $\mathrm{L}(\mathrm{E})=\mathrm{L}(\mathrm{D})$

ε-NFA -> DFA

- Basic idea
- Very similar to the subset construction algorithm
- Recall that for a ε-NFA, $\delta: \mathrm{Q} \times \Sigma \rightarrow 2^{\mathrm{Q}}$
- Use the states of D to represent subsets of Q .

ε-NFA -> DFA

- Formal definition

$-\mathrm{E}=\left(\mathrm{Q}_{\mathrm{E}}, \Sigma, \delta_{\mathrm{E}}, \mathrm{q}_{0}, \mathrm{~F}_{\mathrm{E}}\right)$ be a ε-NFA

- We define DFA, $\mathrm{D}=\left(\mathrm{Q}_{\mathrm{D}}, \Sigma, \delta_{\mathrm{D}}, \mathrm{q}_{\mathrm{D}}, \mathrm{F}_{\mathrm{D}}\right)$
- $\mathrm{Q}_{\mathrm{D}}=2^{\mathrm{QE}}$
- $q_{D}=\operatorname{ECLOSE}\left(q_{0}\right)$
- $F_{D}=$ sets containing at least one state from F_{E}

ε-NFA -> DFA

- Computing δ_{D}
$-\delta_{\mathrm{D}}(\mathrm{S}, \mathrm{a})$ for $\mathrm{S} \in \mathrm{Q}_{\mathrm{D}}, \mathrm{a} \in \Sigma$
- Let $S=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$
- Compute the set of all states reachable from states in S on input a using transitions from E .
$\left\{r_{1}, r_{2}, \cdots, r_{m}\right\}=\bigcup_{i=1}^{n} \delta_{E}\left(p_{i}, a\right)$
- $\delta_{\mathrm{D}}(\mathrm{S}, \mathrm{a})$ will be the union of the ε closures of the elements of $\left\{\mathrm{r}_{1}, \ldots, \mathrm{r}_{\mathrm{m}}\right\}$
$\delta_{D}(S, a)=\bigcup_{j=1}^{m} E \operatorname{CLOSE}\left(r_{j}\right)$

ε-NFA -> DFA

- Now we must show that D accepts the same language as E
- Can be shown (using induction) that for all $\mathrm{x} \in$ Σ^{*}

$$
\text { - } \hat{\delta}_{D}(q, x)=\hat{\delta}_{E}(q, x)
$$

- See Theorem 2.22

ε-NFA -> DFA

- Show that D and E recognize the same language
$-x$ is accepted by E iff $\hat{\delta}_{E}\left(q_{0}, x\right) \cap F_{E} \neq \varnothing$
$-x$ is accepted by D iff $\hat{\delta}_{D}\left(q_{D}, x\right) \cap F_{E} \neq \varnothing$
- Thus,
- x is accepted by D iff x is accepted by E
- Questions?

DFA -> ε-NFA

- The other direction is fairly straighforward.
- For any DFA, there is an equivalent NFA
- An NFA is nothing more than a ε-NFA with no ε transitions. Thus
- $\delta(\mathrm{q}, \varepsilon)$ for all states $\mathrm{q}=\varnothing$

What have we shown

- For every DFA, there is an NFA that accepts the same language and visa versa
- For every DFA, there is a ε-NFA that accepts the same language, and visa versa
- Thus, for every NFA there is a ε-NFA that accepts the same language, and visa versa
- DFAs, NFAs, and $\boldsymbol{\varepsilon}$-NFA s are equivalent!

Questions?

- Let’s take a break.

