Non deterministic finite automata with ε transitions

Languages

- Recall. – What is a language?
 - What is a class of languages?

Finite Automata

- Consists of
 - A set of states (Q)
 - A start state (q_o)
 - A set of accepting states (F)
 - Read symbols ($\boldsymbol{\Sigma}$)
 - Transition function (δ)
- Let's recap

First there was the DFA

- Deterministic Finite Automata
 - For every state and every alphabet symbol there is exactly one move that the machine can make.
 - $-\,\delta:Q\ge\Sigma\to Q$
 - δ is a total function: completely defined. I.e. it is defined for all $q \in Q$ and $a \in \Sigma$

Then, the NFA

- Non-determinism
 - When machine is in a given state and reads a symbol, the machine will have a choice of where to move to next.
 - There may be states where, after reading a given symbol, the machine has nowhere to go.
 - Applying the transition function will give, not 1 state, but 0 or more states.

Non-Deterministic Finite Automata (NFA)

- Transition function
 - δ is a function from $Q \ge \Sigma$ to 2^Q
 - $-\delta$ (q, a) = subset of Q (possibly empty)

- And now...
- Introducing...
- The newest in the FA family...
- The Non deterministic finite automata with ϵ transitions ($\epsilon\textsc{-NFA})$

Nondeterministic Finite Automata with & transitions (E-NFA)

- For both DFAs and NFAs, you must read a symbol in order for the machine to make a move.
- In Nondeterministic Finite Automata with ε transitions (ε-NFA)
 - Can make move without reading a symbol off the read tape
 - Such a move is called a $\boldsymbol{\epsilon}$ transition

Nondeterministic Finite Automata with $\boldsymbol{\epsilon}$

transitions (E-NFA)

- How does such a machine accept?
 - A string will be accepted if there is <u>at least one</u> sequence of state transitions on an input (including ε transitions) that leaves the machine in an accepting state.

Nondeterministic Finite Automata with & transitions (E-NFA)

- Transition function
 - $-\delta$ is a function from $Q \ge (\Sigma \cup \{\epsilon\})$ to 2^Q
 - $-\delta$ (q, a) = subset of Q (possibly empty)
 - In our example
 - $\delta(q_1, 0) = \{q_1, q_4\}$
 - $\delta(q_1, .) = \{q_1\}$
 - $\delta(q_1, +) = \emptyset$
 - $\delta(q_0, \epsilon) = \{q_1\}$

Nondeterministic Finite Automata with $\boldsymbol{\epsilon}$

transitions (E-NFA)

- Transition function on a string
 - $-\delta$ is a function from Q x Σ^* to 2^Q
 - $-\delta (q, x) =$ subset of Q (possibly empty)
 - Set of all states that the machine can be in, upon following all possible paths on input x.
 - We'll need to consider all paths that include the use of $\boldsymbol{\epsilon}$ transitions

ε-Closure

- ϵ closure
 - Before defining the transition function on a string (${}^{\diamond}_{\delta}$ (q,x)), it is useful to first define what is known as the ε closure.
 - Given a set of states S, the ε <u>closure</u> will give the set of states reachable from each state in S using only ε transitions.

ε-Closure

- ε closure: Recursive definition
 - Let $M = (Q, \Sigma, q_o, \delta, F)$ be a ε -NFA
 - Let S be a subset of Q
 - The ε closure, denotes ECLOSE(S) is defined:
 - For each state $p \in S$, $p \in ECLOSE(S)$
 - For any $q \in \text{ECLOSE}(S),$ every element of $\delta(q, \epsilon) \in \text{ECLOSE}(S)$
 - No other elements of Q are in ECLOSE(S)

ε-Closure ε-Closure : Algorithm Since we know that ECLOSE(S) is finite, we can convert the recursive definition to an algorithm. To find ECLOSE(S) where S is a subset of Q Let T = S While (T does not change) do Add all elements of δ(q, ε) where q ∈ T ECLOSE(S) = T

Nondeterministic Finite Automata with ε transitions (ε-NFA)
Accepting a string

A string x is accepted if running the machine on input x, considering all paths, including the use of ε transitions, puts the machine into one of the accepting states
Formally:

x ∈ Σ* is accepted by M if
δ (q₀, x) ∩ F ≠ Ø

Nondeterministic Finite Automata with & transitions (E-NFA)

- Are the following strings accepted by the $\epsilon_{\text{-}}$ $_{\text{NFA}}$ below:
 - aba – ababa
 - aaabbb

Nondeterministic Finite Automata with & transitions (E-NFA)

- I bet that you're asking...
 - Can JFLAP handle ε-NFAs?
 - Well, let's check and see!

Nondeterministic Finite Automata with $\boldsymbol{\epsilon}$

transitions (E-NFA)

- Language accepted by M
 The language accepted by M
 - $L(M) = \{ x \in \Sigma^* \mid x \text{ is accepted by } M \}$
- If L is a language over Σ , L is accepted by M iff L = L(M).
 - For all $x \in L$, x is accepted by M.
 - For all $x \notin L$, x is rejected by M.

Nondeterministic Finite Automata with $\boldsymbol{\epsilon}$

transitions (E-NFA)

- Why they're a good idea
 - Given a regular expression, it is far easier to create an ε -NFA for the language described by the expression than it is to create a plain old DFA.
 - It will also be essential when showing the Fas accept the class of Regular Languages.
 - Questions?

DFA / NFA / ε-NFA Equivalence

- · Surprisingly enough
 - $-\,\epsilon$ transitions to our NDFA does NOT give it any additional language accepting power.
 - DFAs and NFAs and ε-NFA are all equivalent
 Every language that can be accepted by a ε-NFA can also be accepted by an DFA which can also be accepted by a NFA.
 - Let's show this

ϵ -NFA -> DFA

- Given ε-NFA find DFA
 - $$\label{eq:eq:entropy} \begin{split} &- Let \; E = (Q_E, \Sigma, \, \delta_E \, , \, q_0, \, F_E) \; be \; a \; \epsilon\text{-NFA} \; then \\ &\bullet \; There \; exists \; a \; DFA, \, D = (Q_D, \, \Sigma, \, \delta_D, \, q_D, \, F_D) \end{split}$$
 - Such that L(E) = L(D)

ϵ -NFA -> DFA

- Basic idea
 - Very similar to the subset construction algorithm
 - Recall that for a E-NFA , $\delta {:} \: Q \: x \: \Sigma \to 2^Q$
 - Use the states of D to represent subsets of Q.

ε-NFA -> DFA

- Formal definition
 - $E = (Q_E, \Sigma, \, \delta_E \, , \, q_0, \, F_E)$ be a E-NFA
 - We define DFA, $D = (Q_D, \Sigma, \delta_D, q_D, F_D)$
 - $Q_D = 2^{QE}$
 - $q_D = ECLOSE(q_0)$
 - + F_D = sets containing at least one state from F_E

$\epsilon\text{-NFA} \rightarrow DFA$

• Computing δ_D

- $-\delta_D(S, a)$ for $S \in Q_D, a \in \Sigma$
 - Let $S = \{ p_1, p_2, ..., p_n \}$
 - Compute the set of all states reachable from states in S on input a using transitions from E.

 $\{r_1, r_2, \cdots, r_m\} = \bigcup_{i=1}^n \delta_E(p_i, a)$

• $\delta_D(S, a)$ will be the union of the ϵ closures of the elements of $\{r_1, ..., r_m\}$

 $\delta_D(S, a) = \bigcup_{i=1}^{m} ECLOSE(r_i)$

State	ε closure
q_0	$\{q_0, q_1\}$
q ₁	{q ₁ }
q_2	$\{q_2\}$
q_3	$\{q_{3}, q_{5}\}$
q_4	$\{q_4\}$
q_5	$\{q_5\}$

• See Theorem 2.22

ε-NFA -> DFA

- Show that D and E recognize the same language
 - x is accepted by E iff $\mathfrak{H}_{\mathsf{E}}(q_0, x) \cap F_E \neq \emptyset$
 - x is accepted by D iff $\delta_D(q_D, x) \cap F_E \neq \emptyset$

– Thus,

- x is accepted by D iff x is accepted by E
- Questions?

$DFA \rightarrow \epsilon$ -NFA

- The other direction is fairly straighforward. – For any DFA, there is an equivalent NFA
 - An NFA is nothing more than a ϵ -NFA with no ϵ transitions. Thus
 - $\delta(q, \varepsilon)$ for all states $q = \emptyset$

What have we shown

- For every DFA, there is an NFA that accepts the same language and visa versa
- For every DFA, there is a E-NFA that accepts the same language, and visa versa
- Thus, for every NFA there is a E-NFA that accepts the same language, and visa versa
- DFAs, NFAs, and E-NFA s are equivalent!

Questions?

• Let's take a break.