The Pumping Lemma

The Burning Question...

- We've looked at a number of regular languages
- I know that you are just dying to know...
 - Is there a language L that is not regular?
 - To answer this, we'll use what is known as The Pumping Lemma.

The Pumping Lemma

- The pumping lemma formalizes the idea that if a string from a RL is long enough, eventually at least one state on its FA will be have to be repeated on the path that accepts the string.
 - Implies that there is a Kleene star in there somewhere!
- Continually looping on this state will produce an infinite number of strings in the language

The Pumping Lemma

- Statement of the pumping lemma
 - Let L be a regular language.
 - Then there exists a constant n (which varies for different languages), such that for every string x ∈ L with |x| ≥ n, x can be expressed as x = uvw such that:
 - 1. $|\mathbf{v}| > 0$
 - 2. $|uv| \le n$
 - 3. For all $k \ge 0$, the string $uv^k w$ is also in L.

The Pumping Lemma

- · What this means
 - For a long enough string x in L:
 - We can express x as the concatenation of three smaller strings
 - The middle string can be "pumped" (repeated) any number of times (including 0 = deleting) and the resulting string will be in L.

Pumping Lemma

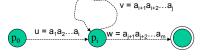
- Proof of the pumping lemma
 - Since L is regular, there is a FA M=(Q, $\!\Sigma, \!q_0, \!A, \!\delta)$ that accepts L.
 - · Assume M has n states.
 - Consider a string x with $|x| = m \ge n$.
 - $\bullet \ \ \text{Express } x=a_1a_2a_3\,\ldots\,a_m \ \ \text{where each } a_i\in\Sigma.$
 - Define p_i to be the state M is in after reading i characters:
 - $p_i = (q_0, a_1 a_2 ... a_i)$
 - $p_0 = q_0$

Pumping Lemma

- Proof of the pumping lemma
 - Since $|x| \ge n$, and we only have n states, one state on it's path must visited more than once.
 - There exists integers i and j, $0 \le i \le j \le n$ such that $p_i = p_i$
 - Then x = uvw
 - $-\mathbf{u} = \mathbf{a}_1 \mathbf{a}_2 \dots \mathbf{a}_i$
 - $\mathbf{v} = \mathbf{a}_{i+1} \mathbf{a}_{i+2} \dots \mathbf{a}_{i}$
 - $-\mathbf{w} = \mathbf{a}_{j+1}\mathbf{a}_{j+2}...\mathbf{a}_{m}$

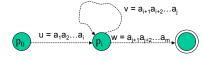
Pumping Lemma

- Proof of pumping lemma
 - Then x = uvw
 - $-\mathbf{u} = \mathbf{a}_1 \mathbf{a}_2 \dots \mathbf{a}_i$
 - $\mathbf{v} = \mathbf{a}_{i+1} \mathbf{a}_{i+2} \dots \mathbf{a}_{j}$
 - $-\ w=a_{j+1}a_{j+2}...a_m$



Pumping Lemma

- Proof of pumping lemma
 - You can loop (pump) on the v loop 0 or more times and there will still be a path to the accepting state.



Pumping Lemma

- So what good is the pumping lemma?
- It can be used to answer that burning question:
 - Is there a language L that is <u>not</u> regular?

Non-regular languages

• Venn-diagram of languages

Is there something out here?

Pumping lemma

- The <u>real</u> strength of the pumping lemma is proving that languages are not regular
 - Proof by contradiction
 - · Assume that the language to be tested is regular
 - Use the pumping lemma to come to a contradiction
 - Original assumption about the language being regular is false
- You <u>cannot</u> prove a language <u>to be</u> regular using the Pumping Lemma!!!!

Pumping lemma

- The Pumping Lemma game
 - To show that a language L is not regular
 - · Assume L is regular
 - · Choose an "appropriate" string x in L
 - In terms of n (number of states in DFA)
 - Express x = uvw following rules of pumping lemma
 - Show that uv^kw is not in L, for some k
 - · The above contradicts the Pumping Lemma
 - · Our assumption that L is regular is wrong
 - · L must not be regular

Pumping Lemma

Pumping lemma

- Example:
 - $-L = \{x \in \{0,1\}^* \mid 0^i 1^i, i \ge 0\}$
 - Ex: 000111, 0011, ε, 00001111

Pumping lemma

- Example
 - Let's play!
 - · Assume that L is regular.
 - Then there is an FA, M that accepts L.
 - Let n be the number of states in M

Pumping lemma

- Example:
 - $-L = \{x \in \{0,1\}^* \mid 0^i 1^i, \, i \ge 0\}$
 - Let's play
 - Choose an appropriate string $x \in L$
 - $\text{ Let } x = 0^n 1^n$
 - Apply Pumping Lemma to x
 - -x = uvw
 - $-|uv| \le n$
 - -|v| > 0

Pumping lemma

- $x = uvw = 0^n1^n$
 - $-00 \dots 0 \ 11 \dots 1$
 - Since |uv| ≤ n, uv must consists entirely of 0s and, as such, v must also consist entirely of 0s.
 - $v = 0^j$ for some $j \le n$

Pumping lemma

- $x = uvw = 0^n1^n = 0^i0^j0^k1^n i + j+k=n$
 - Let's pump!
 - By the Pumping Lemma
 - uv²w is also in L
 - $uv^2w = 0i0^{2j}0^k1^n$
 - Certainly $i + 2j + k \neq n$
 - uv²w has more 0's that 1's
 - Thus uv²w ∉L CONTRADICTION!

Pumping lemma

- We arrived at a contradiction,
 - Thus our original assumption that L is regular must be incorrect
 - Thus L is not regular.
- Note that we need to find only 1 string x that fails in order for the proof by contradiction to work.
 - The key is finding the x that won't work
- Questions?

Pumping Lemma

- Let's try another example:
 - $-L = \{x \in \{0,1\}^* \mid 0^i x, |x| \le i\}$
 - Ex: 0001, 0010, ε , 0000101
 - Let's play!
 - Assume that L is regular.
 - Then there is an FA, M that accepts L.
 - Let n be the number of states in M

Pumping Lemma

- Another Example:
 - $-L = \{x \in \{0,1\}^* \mid 0^i x, |x| \le i\}$
 - Let's play
 - Choose an appropriate string $x \in L$
 - $\text{ Let } x = 0^n 1^n$
 - Apply Pumping Lemma to x
 - -x = uvw
 - $-|uv| \le n$
 - -|v| > 0

Pumping Lemma

- $x = uvw = 0^n1^n$
 - -00...0 11...1
 - Since |uv| ≤ n, uv must consists entirely of 0s and, as such, v must also consist entirely of 0s.
 - $v = 0^j$ for some $j \le n$

Pumping Lemma

- $x = uvw = 0^n1^n = 0^i0^j0^k1^n i + j+k=n$
 - Let's (un)pump!
 - By the Pumping Lemma
 - uv⁰w is also in L
 - $uv^0w = uw = 0^i0^k1^n$
 - Certainly n > i + k
 - The length of the prefix of 0s is less than the suffix x
 - Thus uv⁰w ∉L CONTRADICTION!

Pumping Lemma

- We arrived at a contradiction,
 - Thus our original assumption that L is regular must be incorrect
 - Thus L is not regular.
- Note that we need to find only 1 string x that fails in order for the proof by contradiction to work.
 - We can show x not to work by pumping 0 times
- · Questions?

Non-regular languages

- Informal notion of what regular languages can't express:
 - Counting and comparing
 - Any operation that implies the use of a stack
 - Pal
 - xx^r

Pumping Lemma

- Let's try another example:
 - $-L = set of palindromes over \{a,b\}$
 - · Strings that read the same forwards and backwards
 - "Madam I'm Adam"
 - Ex: aa, abba, abbbbba, ε
 - Let's play!
 - Assume that L is regular.
 - $-% \frac{1}{2}\left(-\right) =-\left(-\right) +\left(-\left(-\right) +\left(-\right) +\left(-\right)$
 - $-\mbox{ Let}\, n$ be the number of states in M

Pumping Lemma

- Another Example:
 - $-L = set of palindromes over \{a,b\}$
 - Let's play
 - Choose an appropriate string $x \in L$
 - $Let x = a^n b a^n$
 - Apply Pumping Lemma to x
 - -x = uvw
 - $-|uv| \le n$
 - -|v| > 0

Pumping Lemma

- $x = uvw = a^nba^n$
 - aa ... a b aa ... a
 - Since $|uv| \le n$, uv must consists entirely of a and, as such, v must also consist entirely of a.
 - $v = a^j$ for some $j \le n$

Pumping Lemma

- $x = uvw = a^nba^n = a^ia^ja^kba^n$ i + j+k=n
 - Let's pump!
 - By the Pumping Lemma
 - uv²w is also in L
 - uv2w has more than n a's
 - Number of a's following b is still n
 - Thus uv2w cannot be a palidrome
 - Thus uv²w ∉L CONTRADICTION!

Pumping Lemma

- We arrived at a contradiction,
 - Thus our original assumption that L is regular must be incorrect
 - Thus L is not regular.
- Note that we need to find only 1 string x that fails in order for the proof by contradiction to work.
- Questions?

Pumping Lemma

- Summary
 - The pumping lemma formalizes the idea that if a string is longer enough, eventually at least one state on the DFA will be have to be repeated on the path that accepts the string.
 - Continually looping on this state will produce an infinite number of strings in the language
 - Used to show that languages are not regular
 - Has other uses as we'll see next time.

Non-regular languages • Venn-diagram of languages Is there something out here? YES Regular Languages Finite Languages

Next time

- Decision properties / algorithms for RLs
- Problem Session...
 - For homeworks: past and present
- Questions?