Non deterministic finite automata

Deterministic Finite Automata

• Automata we’ve been dealing with have been deterministic
 – For every state and every alphabet symbol there is exactly one move that the machine can make.
 – \(\delta : Q \times \Sigma \rightarrow Q \)
 – \(\delta \) is a total function: completely defined. I.e. it is defined for all \(q \in Q \) and \(a \in \Sigma \)

Non-Deterministic Finite Automata (NFA)

• Non-determinism
 – When machine is in a given state and reads a symbol, the machine will have a choice of where to move to next.
 – There may be states where, after reading a given symbol, the machine has nowhere to go.
 – Applying the transition function will give, not 1 state, but 0 or more states.

Non-Deterministic Finite Automata (NFA)

• Example: L corresponds to the regular expression \(\{11 \cup 110\}^*0 \)

Non-Deterministic Finite Automata (NFA)

• How does such a machine accept?
 – A string will be accepted if there is at least one sequence of state transitions on an input that leaves the machine in an accepting state.
 – Such a machine is called a non-deterministic finite automata (NFA)

Non-Deterministic Finite Automata (NFA)

• A Non-Deterministic Finite Automata is a 5-tuple \((Q, \Sigma, \delta, q_0, F) \) where
 – \(Q \) is a finite set (of states)
 – \(\Sigma \) is a finite alphabet of symbols
 – \(q_0 \in Q \) is the start state
 – \(F \subseteq Q \) is the set of final states
 – \(\delta \) is a function from \(Q \times \Sigma \) to \(2^Q \) (transition function)
Non-Deterministic Finite Automata (NFA)

- Transition function
 - δ is a function from $Q \times \Sigma$ to 2^Q
 - $\delta(q, a) = \text{subset of } Q$ (possibly empty)
 - In our example
 - $\delta(q_0, 0) = \{q_0\}$
 - $\delta(q_0, 1) = \{q_1, q_2\}$
 - $\delta(q_4, 1) = \emptyset$

- Transition function on a string x
 - $\hat{\delta}$ is a function from $Q \times \Sigma^*$ to 2^Q
 - $\hat{\delta}(q, x) = \text{subset of } Q$ (possibly empty)
 - Set of all states that the machine can be in, upon following all possible paths on input x.

Non-Deterministic Finite Automata (NFA)

- Recursive definition of $\hat{\delta}$
 1. For any $q \in Q$,
 $$\hat{\delta}(q, \varepsilon) = \{q\}$$
 2. For any $y \in \Sigma^*$, $a \in \Sigma$, $q \in Q$
 $$\hat{\delta}(q, ya) = \bigcup_{p \in \delta(q, y)} \hat{\delta}(p, a)$$

Set of all states obtained by applying δ to all states in (q, y) and input a.

Non-Deterministic Finite Automata (NFA)

- Definition of accepting
 - A string x is accepted if running the machine on input x, considering all paths, puts the machine into one of the final states
 - Formally:
 - $x \in \Sigma^*$ is accepted by A if
 $$\hat{\delta}(q_0, x) \cap F \neq \emptyset$$

Non-Deterministic Finite Automata (NFA)

- Once again, in our example
 - $\hat{\delta}(q_0, 110) = \{q_0, q_4\}$
 - $F = \{q_4\}$
 - $(q_0, 110) \cap F = \{q_4\} \neq \emptyset$
 - 110 is accepted by A
Non-Deterministic Finite Automata (NFA)

- Language accepted by A
 - The language accepted by A
 - $L(A) = \{ x \in \Sigma^* \mid x \text{ is accepted by } A \}$

- If L is a language over Σ, L is accepted by A iff $L = L(A)$.
 - For all $x \in L$, x is accepted by A.
 - For all $x \notin L$, x is rejected by A.

Non-Deterministic Finite Automata (NFA)

- I bet that you’re asking…
 - Can JFLAP handle NFAs?
 - Well, let’s check and see!

Non-Deterministic Finite Automata (NFA)

- Let’s try another one:
 - L = set of strings ending in ab
 - Let’s see how this fares with JFLAP

- Nondeterministic Finite Automata (NFA)
 - At each state, for each symbol, the machine can move into 0 or more states.
 - δ is a function from $Q \times \Sigma$ to 2^Q
 - A string is accepted if there is at least one sequence of moves on input x placing the machine into an accepting state.
 - Questions?

DFA / NFA Equivalence

- Surprisingly enough
 - Adding nondeterminism to our DFA does NOT give it any additional language accepting power.
 - DFAs and NFAs are equivalent
 - Every language that can be accepted by an NFA can also be accepted by a DFA and visa-versa

DFA / NFA Equivalence

- How we will show this
 1. Given an NFA that accepts L, create an DFA that also accepts L.
 2. Given an DFA that accepts L, create an NFA that also accepts L.

Are we ready?
NFA→DFA

• Given NFA find DFA
 – Let $N = (Q_N, \Sigma, \delta_N, q_0, F_N)$ be a NFA then
 • There exists a DFA, $D = (Q_D, \Sigma, \delta_D, q_D, F_D)$
 • Such that $L(N) = L(D)$

NFA→DFA

• Basic idea
 – Recall that for a NFA, $\delta: Q \times \Sigma \rightarrow 2^Q$
 – Use the states of D to represent subsets of Q.
 – If there is one state of D for every subset of Q,
 then the non-determinism of N can be eliminated.
 – This technique, called subset construction, is a primary means for removing non-determinism
 from an NFA.

NFA→DFA

• Formal definition
 – $N = (Q_N, \Sigma, \delta_N, q_0, F_N)$ be a NFA
 – We define DFA, $D = (Q_D, \Sigma, \delta_D, q_D, F_D)$
 • $Q_D = 2^Q$
 • $q_D = \{q_0\}$
 • For $q \in Q_D$ and $a \in \Sigma$,
 • $\delta_D(q, a) = \bigcup_{p \in \delta_N(q, a)} \{p\}$
 • $F_D = \{q \in Q_D | q \cap F_N \neq \emptyset\}$
 – Note that we need only include states on D (subsets of Q) if the state is reachable.

NFA→DFA

• Algorithm for building D
 – Add $\{q_0\}$ to Q_D
 – While there are states of Q_D whose transitions are yet to be defined
 • Let $q \in Q_D$
 • For each $a \in \Sigma$, determine the set of states, P, in N that are reachable
 from q on input a
 • If there is no state in Q_D corresponding to P,
 add one.
 • Define $\delta_D(q, a) = \text{state in } Q_D \text{ corresponding to } P$
 – Define F_D as any state in Q_D that corresponds to a subset containing any of the final states of N

NFA→DFA

• Example

Now we must show that D accepts the same language as N
 – It can be shown (by induction) that for all $x \in \Sigma^*$
 $\delta_D(q_0, x) \in F_D$
 • Note that both of these are Sets of states from N
 • See Theorem 2.11 in Text
NFA -> DFA

• Show that D and N recognize the same language
 – x is accepted by D iff $\delta_D(q_D, x) \in F_D$
 – F_D contains sets that contain any state in F_N
 – Thus
 $\delta_D(q_D, x) \in F_D \iff \delta_N(q_N, x) \in F_N$
 • x is accepted by D iff x is accepted by N

What have we shown

• In Step 1 we’ve shown:
 – Given a NFA
 • There exists an DFA that accepts the same language
 • Non-determinism can be removed from an NFA by using a subset construction algorithm.
 – Questions?

Step 2: Given DFA find NFA

• Observe that a DFA can easily be converted to an equivalent NFA:
 – DFAs – all transitions lead to exactly one state
 – Define the transitions of the NFA to consists of sets of only 1 element.

What have we shown

• In Step 2 we’ve shown:
 – Given a DFA
 • There exists an NFA that accepts the same language

What have we shown

If L \in NFA then L \in DFA

Equivalence

If L \in DFA then L \in NFA
Summary

• Non-deterministic finite automata (NFA)
 – Machine now can “choose” its path.
 – Each transition takes you from a state to a set of states.
 – Equivalent in language recognition power to DFA.
 – Questions?