Strings and Languages

“It is always best to start at the beginning”

-- Glynda, the good witch of the North

What is a Language?

• A language is a set of strings made of symbols from a given alphabet.
• An alphabet is a finite set of symbols (usually denoted by \(\Sigma \)).

 – Examples of alphabets:
 • \([0, 1]\)
 • \(\{a, \beta, \gamma, \delta, \epsilon, \zeta, \eta\}\)
 • \(\{a, b, c, d, e, \phi, \chi, \mu, n, o, \rho, q, r, s, t, u, v, w, x, y, z\}\)
 • \(\{a\}\)

What is a string?

• A string over \(\Sigma\) is a finite sequence (possibly empty) of elements of \(\Sigma\).
• \(\epsilon\) denotes the null string, the string with no symbols.

 – Example strings over \(\{a, b\}\)
 • \(\epsilon, a, b, aa, bb, aba, abba\)
 – NOT strings over \(\{a, b\}\)
 • \(aaa\ldots, abca\)

The length of a string

• The length of a string \(x\), denoted \(|x|\), is the number of symbols in the string

 – Example:
 • \(|abba\beta| = 5\)
 • \(|a| = 1\)
 • \(|b| = 7\)
 • \(|\epsilon| = 0\)

Strings and languages

• For any alphabet \(\Sigma\), the set of all strings over \(\Sigma\) is denoted as \(\Sigma^*\).
• A language over \(\Sigma\) is a subset of \(\Sigma^*\).

 – Example
 • \(\{a, b\}^* = \{\epsilon, a, b, aa, bb, ab, ba, aaa, bbb, baa, \ldots\}\)
 – Example Languages over \(\{a, b\}\)
 • \(\{a, b, aa, bb\}\)
 • \(\{x \in \{a,b\}^* \mid |x| = 8\}\)
 • \(\{x \in \{a,b\}^* \mid |x| \text{ is odd}\}\)
 • \(\{x \in \{a,b\}^* \mid n_a(x) = n_b(x)\}\)
 • \(\{x \in \{a,b\}^* \mid n_a(x) + 2 \text{ and } x \text{ starts with } b\}\)
Concatenation of String

• For $x, y \in \Sigma^*$
 – xy is the concatenation of x and y.
 • $x = aba$, $y = bbb$, $xy = ababbb$
 • For all $x, \varepsilon x = x$
 – x^i for an integer i, indicates concatenation of x, i times
 • $x = aba$, $x^3 = abababa$
 • For all $x, x^0 = \varepsilon$

Some string related definitions

• x is a substring of y if there exists $w, z \in \Sigma^*$ (possibly ε) such that $y = wxz$.
 – car is a substring of $carnage, descartes, vicar, car$, but not a substring of charity.
• x is a suffix of y if there exists $w \in \Sigma^*$ such that $y = wx$.
• x is a prefix of y if there exists $z \in \Sigma^*$ such that $y = xz$.

Operations on Languages

• Since languages are simply sets of strings, regular set operations can be applied:
 – For languages L_1 and L_2 over Σ^*
 • $L_1 \cup L_2 = \{xy \mid x \in L_1 \text{ or } y \in L_2\}$
 • $L_1 \cap L_2 = \{xy \mid x \in L_1 \text{ and } y \in L_2\}$
 • $L_1 - L_2 = \{xy \mid x \in L_1 \text{ that are not in } L_2\}$
 • $L^* = \Sigma^* - L$

Concatenation of Languages

• If L_1 and L_2 are languages over Σ^*
 – $L_1L_2 = \{xy \mid x \in L_1 \text{ and } y \in L_2\}$
 – Example:
 • $L_1 = \{\text{hope, fear}\}$
 • $L_2 = \{\text{less, fully}\}$
 • $L_1L_2 = \{\text{hopeless, hopefully, fearless, fearfully}\}$

Concatenation of Languages

• If L is a language over Σ^*
 – L^k is the set of strings formed by concatenating elements of L, k times.
 – Example:
 • $L = \{aa, bb\}$
 • $L^3 = \{aaaaaa, aaaaab, aabbaa, aabbbb, bbbbb, bbbbaa, bbaaab, bbaaaa\}$
 • $L^0 = \{\varepsilon\}$

Kleene Star Operation

• The set of strings that can be obtained by concatenating any number of elements of a language L is called the Kleene Star, L^*

\[\bigcup_{n \geq 0} L^n = L^* \]

Note that since, L^* contains L^0, ε is an element of L^*
Kleene Star Operation

- The set of strings that can be obtained by concatenating one or more elements of a language L is denoted L^+

Specifying Languages

- How do we specify languages?
 - If language is finite, you can list all of its strings.
 - $L = \{a, aa, aba, aca\}$
 - Using basic Language operations
 - $L = \{aa, ab\}^* \cup \{b\} \{bb\}^*$
 - Descriptive:
 - $L = \{x \mid n_a(x) = n_b(x)\}$

Specifying Languages

- Next we will define how to specify languages recursively

 - In future classes, we will describe how to specify languages by defining a mechanism for generating the language

 - Any questions?

Recursive Definitions

- Definition is given in terms of itself
 - Example (factorial)

 $$
 4! = 4 \cdot 3!,
 = 4 \cdot (3 \cdot 2!),
 = 4 \cdot (3 \cdot (2 \cdot 1!)),
 = 4 \cdot (3 \cdot (2 \cdot (1 \cdot 0!))),
 = 24
 $$

Recursive Definitions and Languages

- Languages can also be described by using a recursive definition
 1. Initial elements are added to your set (BASIS)
 2. Additional elements are added to your set by applying a rule(s) to the elements already in your set (INDUCTION)
 3. Complete language is obtained by applying step 2 infinitely

Recursive Definitions and Languages

- Example:
 - Recursive definition of Σ^*
 1. $\epsilon \in \Sigma^*$
 2. For all $x \in \Sigma^*$ and all $a \in \Sigma$, $xa \in \Sigma^*$
 3. Nothing else is in Σ^* unless it can be obtained by a finite number of applications of rules 1 and 2.
Recursive Definitions and Languages

• Let’s iterate through the rules for $\Sigma = \{a,b\}$
 - $i=0$ $\Sigma^* = \{\epsilon\}$
 - $i=1$ $\Sigma^* = \{\epsilon, a, b\}$
 - $i=2$ $\Sigma^* = \{\epsilon, a, b, aa, ab, ba, bb\}$
 - $i=3$ $\Sigma^* = \{\epsilon, a, b, aa, ab, ba, bb, aaa, aab, aba, abb, baa, bab, bba, bbb\}$
 - …and so on

Recursive Definitions and Languages

• Example:
 - Recursive definition of L^*
 1. $\epsilon \in L^*$
 2. For all $x \in L$ and all $y \in L$, $xy \in L^*$
 3. Nothing else is in L^* unless it can be obtained by a finite number of applications of rules 1 and 2.

Recursive Definitions – another Example

• Example: Palindromes
 - A palindrome is a string that is the same read left to right or right to left
 - First half of a palindrome is a “mirror image” of the second half
 - Examples:
 • a, b, aba, abba, babbab.

Recursive Definitions – another Example

• Recursive definition for palindromes (pal) over Σ
 1. $\epsilon \in \text{pal}$
 2. For any $a \in \Sigma$, $a \in \text{pal}$
 3. For any $x \in \text{pal}$ and $a \in \Sigma$, $axa \in \text{pal}$
 4. No string is in pal unless it can be obtained by rules 1-3

Recursive Definitions – another Example

• Let’s iterate through the rules for pal over $\Sigma = \{a,b\}$
 - $i=0$ $\text{pal} = \{\epsilon, a, b\}$
 - $i=1$ $\text{pal} = \{\epsilon, a, b, aaa, aba, bab, bbb\}$
 - $i=2$ $\text{pal} = \{\epsilon, a, b, aaa, aba, bab, bbb, aaaaa, aabaa, ababa, abbaa, baaba, ababa, babba, bbabb, bbabb\}$
Recursive Definitions – yet another Example

• Example: Fully parenthesized algebraic expressions (AE)
 – \(\Sigma = \{ a, (,), +, - \} \)
 – All expressions where the parens match correctly are in the language
 – Examples:
 • a, (a + a), (a + (a - a)), (a + a) - (a + a), etc.

Recursive Definitions – yet another Example

• Recursive definition for AE
 1. \(a \in AE \)
 2. For any \(x, y \in AE \), \((x + y) \) and \((x - y) \) \in AE
 3. No string is in pal unless it can be obtained by rules 1-2

Recursive Definitions – yet another Example

• Let’s iterate through the rules for AE
 – i=0 \(AE = \{ a \} \)
 – i=1 \(AE = \{ a, (a+a), (a-a) \} \)
 – i=2 \(AE = \{ a, (a+a), (a-a), (a + (a + a)), (a - (a + a)), (a + (a - a)), (a - (a + a)), (a + a) + a), (a + a) - a), \ldots \} \)

Recursive Definitions – a final Example

• \(L = \{ x \in \{0,1\}^* | x = 0^i1^j \text{ and } i \geq j \geq 0 \} \)
 – In English:
 • strings over the alphabet \{0, 1\}
 • each string contains zero or more 0’s followed by a zero or more 1’s
 • the number of 1’s is greater than or equal to the number of 0’s

Recursive Definitions and Languages

• Questions on Recursive Definition?

• Functions on strings and languages can also be defined recursively.
Structural Induction

• When dealing with languages, it is sometime cumbersome to restate the problems in terms of an integer.

• For languages described using a recursive definition, another type of induction, structural induction, is useful.

Structural Induction

• Principles
 – Suppose
 • U is a set,
 • I is a subset of U (BASIS),
 • Op is a set of operations on U (INDUCTION).
 • L is a subset of U defined recursively as follows:
 – I ⊆ L
 – L is closed under each operation in Op
 – L is the smallest set satisfying 1 & 2

Then

 – To prove that every element of L has some property P, it is sufficient to show:
 1. Every element of I has property P
 2. The set of elements of L having property P is closed under Op

#2: If x ∈ L has property P, Op(x) also must have property P

Structural Induction

• To prove that every element of L has some property P:
 – Our property is:
 A = {x ∈ {0,1}⁺ | x = 0ⁱ1ʲ and i ≥ j ≥ 0}

P(x) is true if x ∈ A.
Structural Induction

– To prove that every element of L has some property P, it is sufficient to show:
 1. Every element of I has property P
 In our case, must show that ε has property P, i.e. $\varepsilon \in A$, $\varepsilon = 0^i : i \geq 0$
 Once again, this is the case where $i=j=0$

2. The set of elements of L having property P is closed under Op
 If $x \in L$ has property P, $Op(x)$ also must have property P
 Assume x has property P,
 $x \in A$, $x = 0^i : i \geq 0$
 $Op(x) = 0^x$, which is an element of A
 $Op(0^x) = 0^x1$ which is an element of A
 Similar proof to induction with no mention of an integer

Questions?

• Any questions?

• Next Time:
 – Our first machine: The Finite Automata!