Unrestricted Grammars

Homework

- Homework #7
 - Due today
- Homework #8 (due Tuesday or Thursday)
 - -9.5
 - 9.38 (only decode first 4 transitions)
 - -11.
 - Give the topic presented in this class that your enjoyed the most
 - Give the topic presented in this class that your enjoyed the least.

Plan for today

- Relating CFL to Recursive Languages
 - Unrestricted Grammars
- Computation and Unsolvability

Before We Start

• Any questions?

Languages

- You are the weakest link!
 - What is a language?
 - What is a class of languages?

And this one...

How do these 2 relate

Unrestricted grammars

• To answer this we'll have to take another look at grammars.

Context Free Grammars

- Let's formalize this a bit:
 - A context free grammar (CFG) is a 4-tuple: (V,
 - Σ , S, P) where
 - V is a set of variables
 - Σ is a set of terminals
 - V and Σ are disjoint (I.e. $V \cap \Sigma = \emptyset$)
 - $S \in V$, is your start symbol

Context Free Grammars

- Let's formalize this a bit:
 - Production rules
 - Of the form $A\to\beta$ where
 - A = V
 - $\beta \in (V \cup \Sigma)^*$ $\,$ string with symbols from V and Σ
 - We say that γ can be derived from α in one step:
 - A \rightarrow β is a rule
 - $-\alpha=\alpha_1 A \alpha_2$
 - $\gamma = \alpha_1 \beta \alpha_2$
 - $-\alpha \Rightarrow \gamma$

Context Free Grammars

- Let's formalize this a bit:
 - Production rules
 - We say that the grammar is context-free since this substitution can take place regardless of where A is.
 - We write $\alpha \Rightarrow^* \gamma$ if γ can be derived from α in zero or more steps.

Unrestricted Grammars

- With unrestricted grammars, there is no restriction on the length of the left hand side of a production.
- The only rule is that the left hand side must contain at least 1 varaible
 - Example:
 - ABC \rightarrow aB
 - Ba \rightarrow ACA
 - $\bullet \ aAa \mathop{\rightarrow} b$

Unrestricted grammars

- Let's formalize this a bit:
 - An unrestricted (or phase-structure) grammar is a 4-tuple: (V, Σ , S, P) where
 - V is a set of variables
 - Σ is a set of terminals
 - V and Σ are disjoint (I.e. $V \cap \Sigma = \emptyset$)
 - $S \in V$, is your start symbol

Unrestricted grammars

- Let's formalize this a bit:
 - Production rules
 - Of the form $\alpha \rightarrow \beta$ where
 - α , $\beta \in (V \cup \Sigma)^*$ $\,$ string with symbols from V and Σ
 - α contains at least 1 variable.
 - If $\alpha \to \beta$ is a rule , we say that γ can be derived from α in one step:
 - By replacing a occurrence of $\boldsymbol{\alpha}$ on the right hand side with

Unrestricted grammar

- Example
 - $-L = \{ a^i b^i c^i \mid i \ge 1 \}$ note: this is not a CFL
 - $-S \rightarrow A_1BCS_1 \mid A_1BC$ (1)
 - $-S_1 \rightarrow ABCS_1 \mid ABC$ (2)
 - $-BA \rightarrow AB$ (3) $CA \rightarrow AC$ (4)
 - $CB \rightarrow BC (5)$ $cC \rightarrow cc$ (6)
 - $-bC \rightarrow bc$ (7) $bB \rightarrow bb$ (8)
 - $-aB \rightarrow ab$ (9) $aA \rightarrow aa$ (10)
 - $-A_1 \rightarrow a$ (11)

Unrestricted grammar

- · Derive aabbcc
 - $-S \rightarrow A_1BC\underline{S}_1$ (1)
 - $\rightarrow A_1BC\overline{A}BC\underline{S}$ (2)
 - $\rightarrow A_1BCABCABC$
 - (2)
 - \rightarrow aB<u>CA</u>BCABC (11)(4)
 - \rightarrow aBACBCABC
 - \rightarrow aABCB<u>CA</u>BC (3)
 - \rightarrow aABC<u>BA</u>CBC (4)
 - \rightarrow aAB<u>CA</u>BCBC (3)
 - \rightarrow aABACBCBC (4)

Unrestricted grammar

- · Derive aabbcc
 - $\rightarrow aABACBCBC$
 - $\rightarrow aAABCBCBC$ (3)
 - $\rightarrow aAABBC\underline{CB}C$ (5)
 - $\rightarrow aAABB\underline{CB}CC$ (5)
 - $\rightarrow \underline{aA}ABBBCCC$ (5)
 - $\rightarrow a\underline{a}\underline{A}BBBCCC$ (10)
 - $\rightarrow aa\underline{aB}BBCCC$ (10)− → aaabBBCCC (9)

Unrestricted grammar

- · Derive aabbcc
 - → aaabBBCCC
 - − → aaabbBCCC (8)
 - $\rightarrow aaabb\underline{bC}CC$ (8)
 - $\rightarrow aaabbb\underline{cC}C$ (7)
 - $\rightarrow aaabbbc\underline{cC}$ (6)
 - − → aaabbbccc (6)
- · Questions?

Context Sensitive Grammar

- Context Sensitive Grammars
 - Productions
 - $\alpha \rightarrow \beta$ where α contains at least 1 variable
 - And $|\alpha| \le |\beta|$
 - A variable can only be replaced in the <u>context</u> of other symbols
 - A language derived fron a context sensitive grammar is a context sensitive language.
 - The last example was a context sensitive language

Context Sensitive Grammar

- Do Context Sensitive Languages have a corresponding machine?
 - Of course, all language classes do.
 - Linear Bounded Automata
 - · Like a TM except
 - Has two additional symbols \langle and \rangle
 - The LBA's starting configuration is $(q_0, \langle x \rangle)$
 - The machine cannot move left of the \langle or right of the \rangle
 - An LBA can only use n cells on the tape where n is the size of the input string.

It can be shown that:

- Every Context Free Language is Context Sensitive
 - By definition of the grammars
- Every Context Sensitive Language is Recursive
 - Minor modification to turn an LBA into a TM that always halts.
- There is a recursive language that is not Context Sensitive
 - One of those strange diagonal type languages.
 - Captain Kirk \rightarrow Robot \rightarrow BOOM.

It also can be shown:

- Every recursively enumerable language can be generated by an unrestricted grammar.
- In fact, Chomksy (the grammar guy), set out to define the four language classes:
 - Regular, CF, CS, Recursively Enumerable
 - By just using grammars.

Chomsky Hierarchy (1956, 1959)

Туре	Languages (grammars)	Form of productions in grammar	Accepting device
3	Regular	$A \rightarrow aB, A \rightarrow a$ $(A, B \in V, a \in \Sigma)$	Finite automaton
2	Context-free	$A \to \alpha \\ (A \in V, \alpha \in (V \cup \Sigma)^*)$	Pushdown automaton
1	Context-sensitive	$\alpha \to \beta$ $(\alpha, \beta \in (V \cup \Sigma)^*, \beta \ge \alpha ,$ $\alpha \text{ contains a variable})$	Linear-bounded automaton
0	Recursively enumerable (unrestricted or phrase-structure)	$\alpha \to \beta$ $(\alpha, \beta \in (V \cup \Sigma)^*,$ α contains a variable)	Turing machine

Summary

- Unrestricted Grammars
- Context Sensitive Grammars
- Linear Bounded Automata
- Chomsky Hierarchy
- Questions?