
1

Trees III

Huffman Trees

Announcement

• Final Exam
– Wednesday, February 25, 2004
– 8:00am – 10:00 am
– 70-3435

• Please report all exam conflicts now!

Project 2 Notes

• Writeup now on the Web
• Due Dates:

– Minimum submission due Friday, Feb 6th

• Entry.java & Document.java
• Partial implementation of Directory.java provided

– Final submission due Sunday, Feb 15th

• A little more than a week after the minimum!
• Complete Directory.java & VFSystem.java
• Integration tests WILL be performed.

Announcement

• Exam 2
• Wednesday, Feb 4th

• Covering:
– Java IO
– Recursion
– Asymptotic Analysis
– Searching
– Sorting

Before we begin

• Questions on trees?

Huffman Trees

• Another “real live” application of binary
trees

• Binary (I.e. 0, 1) encoding of characters

2

Huffman Trees

• Suppose we want to “encode” a text
message into a sequence of 1’s and 0’s:
– Each character will be given a binary code
– No code for one character is a prefix of the

code for another character
– More frequently used characters have shorter

codes.

Huffman Trees

• Example:
– Say we wish to encode 5 characters a,b,c,d,e
– One possible encoding:

100e
011d
010c
001b
000a
CodeChar

Huffman Trees

• Using this encoding

• abca = 000 001 010 000

100e
011d
010c
001b
000a
CodeChar

Huffman Trees

• Suppose we are given frequency of
occurrences for each character

e
d
c
b
a

Char

1025 %
0018 %
0115 %
1140 %
00012 %

CodeOccurrence

Huffman Trees

• Chars that occur more frequently have
shorter codes.

e
d
c
b
a

Char

1025 %
0018 %
0115 %
1140 %
00012 %

CodeOccurrence

Huffman Trees

• No code is a prefix of any other code
• Using this encoding

– abca = 000 11 01 000
– 10 bits

• Using last encoding
– abca = 000 001 010 000
– 12 bits 10e

011d
01c
11b
000a
CodeChar

3

Huffman Trees

• This sequence of codes can be represented
by a binary tree:
– Leaves represent characters
– Following left child represents appending a 0 to

a code
– Following right child represents appending a 1

to a code

Huffman Trees

• To obtain a code for a given character
– Start at the root
– Find a path to the character’s leaf node
– Append a 0 to a code every time you follow a

left child
– Append a 1 to a code every time you follow a

right child.

Huffman Tree

10e
011d
01c
11b
000a
CodeChar

a d

c e b

0

0

0

0

1

1

1

1

Huffman Tree

10e
011d
01c
11b
000a
CodeChar

a d

c e b

0

0

0

0

1

1

1

1

Find the code for a 0 0 0

Huffman Tree

10e
011d
01c
11b
000a
CodeChar

a d

c e b

0

0

0

0

1

1

1

1

Find the code for e 1 0

Decoding using a Huffman Tree

• Start with the root
• For each “bit” follow an edge
• When you get to leaf, write the char

associated with the leaf
• Go back to the root.

4

Decoding using a Huffman Tree

a d

c e b

0

0

0

0

1

1

1

1

Decode:

00100101100011101

d d c de b c

Huffman Coding

• How to build these Huffman trees
– Given:

• Set of characters to be encoded
• A “weight” assigned to each character (indicating its

frequency of occurrence).

Huffman Coding

• How to build these Huffman trees
1. Begin with a forest of trees. All trees are one

node with the weight equal to the weight of
the character.

2. Repeat until there is only 1 tree
1. Choose 2 trees: T1 and T2 with the smallest

weights and combine creating a new tree with left
subtree = T1 and right subtree = T2

Huffman Coding

12

a

40

b

15

c

8

d

Start: Each char
is its own tree

Combine trees
with smallest
weights: a & d

12

a

25

e

25

40

b

15

c

25

e

25

8

d

20

Huffman Coding

40

b

15

c

25

e

25

12

a

8

d

20

Combine trees
with smallest
weights:

12

a

8

d

20 15

c

35
40

b

25

e

25

Huffman Coding

12

a

8

d

20 15

c

35

40

b

25

e

25

Combine trees
with smallest
weights:

12

a

8

d

20 15

c

35 25

e

25

60 40

b

5

Huffman Coding

12

a

8

d

20 15

c

35 25

e

25

60 40

b

Finally, combine
the last 2 trees

100

Huffman Coding

a d

c

25

e
b

0

0

0

0

1

1

1

1
e
d
c
b
a

CodeChar
0000
1

001

0001

01

Huffman Coding

a d

c

25

e
b

0

0

0

0

1

1

1

1

Decode:
000011000000101

a b b a c e

Huffman Coding

• This is an example of a greedy algorithm.
– Only considers information available during a

given iteration.
– Local decision → Global solution

• You will be implementing the Huffman
coding algorithm in Lab 9.

Summary

• Huffman Coding
– Used to encode characters into 0’s and 1’s
– More frequent characters have smaller codes
– Result represented by a binary tree
– Built using a greedy algorithm

– Questions?

Next time

• Introduction to hashing

