
1

Trees II

Binary Search Trees

Announcement

• Final Exam
– Wednesday, February 25, 2004
– 8:00am – 10:00 am
– 70-3435

• Please report all exam conflicts now!

Project 2 Notes

• Writeup now on the Web
• Due Dates:

– Minimum submission due Friday, Feb 6th

• Entry.java & Document.java
• Partial implementation of Directory.java provided

– Final submission due Sunday, Feb 15th

• A little more than a week after the minimum!
• Complete Directory.java & VFSystem.java
• Integration tests WILL be performed.

Announcement

• Exam 2
• Wednesday, Feb 4th

• Covering:
– Java IO
– Recursion
– Asymptotic Analysis
– Searching
– Sorting

Announcement

• Office hour tomorrow cancelled.
– 2-3

Trees

I think that I shall never
see

A poem lovely as a tree

-- J. Kilmer

2

Anatomy of a Tree

a

b c

d e f g

h i j

Root

Level 1

Level 2

Level 3

b,c are childen of a

a is the parent of b &
c

This tree has a depth
of 3

Internal
nodes

Leaves

Anatomy of a Binary Tree

• Binary Tree
– Each node has at most

2 children
– Children of nodes in a

binary tree are referred
to as left child or right
child

• Node h is the left child
of Node f

• Node i is the right child
of Node f

a

b c

d e f g

h i

Implementing a Binary Tree

• Define a binary tree node object
• Each node can be seen as the root of a

Binary Tree.

Binary Search Trees (BST)

• Another use for binary trees
• Efficient storage for search / retrieval of

“sortable” data.
• Basic idea

– Left subtree contains nodes with data less than
data at node

– Right subtree contains nodes with data greater
than data at node

Binary Search Trees

• Branching can also imply ordering of node
data

45

30 55

50 6022 35

<

< <

>

> >

All values less than 45 All values greater than 45

Binary Search Trees

• Branching can also imply ordering of node
data

45

30 55

50 6022 35

<

< <

>

> >

All values less than 22 All values greater than 55

3

Comparable

• Data in BST need to be compared
– Comparable interface:

• public int compareTo(Object o)
• Compares this object with the specified object for order.

Returns a negative integer, zero, or a positive integer as
this object is less than, equal to, or greater than the
specified object.

• Assumes that o is of same class of object being compared
to.

BST as Sets

• What if a data item is equal to the data at a
node?
– We’ll assume that the BST represents a set

• Each element can be present in the tree only once.
• No duplicates

Binary Search Trees (BST)

• Class BSTNode
– extends BTNode
– Modify BTNode to accept Comparable as data.
– Additional methods

• Insert – Add a node to the BST
• Find – Find an object in the BST
• Remove – Remove a Node from a BST
• Print – all objects in a BST

Binary Search Trees (BST)

• Insert
– Must make sure that we insert the node into the

proper place in the tree.
– At each node

• If the data of the node being inserted is < the data of
the node into which we are inserting, new node must
be placed into the left subtree

• If the data of the node being inserted is > the data of
the node into which we are inserting, new node must
be placed into the left subtree

Binary Search Trees

• Let’s say we are inserting a node with data
= 42

45

30 55

50 6022 35

<

< <

>

> >

Binary Search Trees (BST)
public void insert (BSTNode N)
{

Comparable D = N.getData();
if (D.compareTo(data) < 0)

leftChild.insert (N);
else

rightChild.insert (N);
}

4

Binary Search Trees

• What if we have no left or right child?

Binary Search Trees

• Let’s say we are inserting a node with data
= 23

45

30 55

50 6022 35

<

< <

>

> >

Binary Search Trees (BST)

• Insert
– When you need to insert into the left (right)

child of a node that has no left (right) child
• Simply define the node to be inserted to be the new

left (right) child.

Binary Search Trees

• Let’s say we are inserting a node with data
= 23

45

30 55

50 6022 35

<

< <

>

> >

23
>

Binary Search Trees (BST)
• Insert (corrected code)

public void insert (BSTNode N)
{

Comparable D = N.getData();
if (D.compareTo(data) < 0) {

if (leftChild != null) leftChild.insert (N);
else setLeft (N);

} else {
if (rightChild != null) rightChild.insert (N);
else setRight (N);

}
}

Binary Search Trees (BST)

• Insert

• Questions?

5

Binary Search Trees (BST)

• Find
– Find and return a node in the BST that has a

particular data value
– Return null if data is not in the BST
– Basic idea

• At each node:
– If data is equal to node data, return node
– If data is < than node data, call find on left subtree
– If data is > than node data, call find on right subtree

Binary Search Trees

• Let’s say we are looking for = 35

45

30 55

50 6022 35

<

< <

>

> >

23
>

Beware of this guy!

• What if we have no left or right child?

Binary Search Trees

• Let’s say we are looking for = 37

45

30 55

50 6022 35

<

< <

>

> >

23
>

Binary Search Trees

• Find
– If you get to a node with no left(right) subtree

to search, the search data must not be in the
BST!

Binary Search Trees (BST)

• Find
– Final algorithm:

• At each node:
– If data is equal to node data, return node
– If data is < than node data,

» If node has a left subtree call find on left subtree
» Otherwise return null

– If data is > than node data,
» If node has a right subtree call find on right subtree
» Otherwise return null.

6

Binary Search Trees (BST)

• Find

• Questions

Binary Search Trees (BST)

• So far
– Binary Search Trees
– Insert
– Find

– Next: Remove & Print

Binary Search Tree

• Removal
– Remove the node with a given data value
– Basic idea:

• First find the node with the given data value using
find.

• Remove the node..but
– Take care to reattach any children of the deleted node to

the deleted node’s parent.

Binary Search Tree

• Example:

10

5

7

14

12 18

15

Binary Search Tree

• Removal
– First find node to be removed
– 5 cases:

1. Data not in tree – No node to delete
2. Node to be deleted is a leaf
3. Node to be deleted has only a right child
4. Node to be deleted has only a left child
5. Node to be deleted has both children

Binary Search Tree

• Removal: Case 2
– Node to be deleted is a leaf
– Simply remove it! 10

5

7

14

12 18

15

7

Binary Search Tree

• Removal: Case 3
– Node only has a right child
– Replace node with it’s right child

10

5

7

14

12 18

15

7

Binary Search Tree

• Removal: Case 4
– Node only has a left child
– Replace node with it’s left child

10

5

7

14

12 18

15

15

Binary Search Tree

• Removal: Case 5
– Node has both children
– Replace node with leftmost node of right

subtree.
10

5

7

14

12 18

15

15

Binary Search Tree

• Removal: Case 5
– Node has both children
– Replace node with leftmost node of right

subtree. 10

5

7

14

12 18

15

12

Binary Search Tree

• Let’s write this in code:

public BSTNode getLeftmostNode()
{

if (left == null) return this;
else return

(left.getLeftmostNode());
}

Binary Search Tree
public void remove (Comparable C)
{

// Find the node to be removed
BSTNode N = find (C);

// start the removal
if (N != null) {

// get the parent
BSTNode P = N.getParent();

8

Binary Search Tree

// case 2: leaf

if ((N.getLeft() == null) &&

(N.getRight() == null)) {

if (N = P.getLeft())

P.setLeft (null);
else

P.setRight (null);

}

Binary Search Tree
// case 3: only left child
if (((N.getLeft() != null) && (N.getRight() == null)) {

BSTNode L = N.getLeft()
if (P != null) {
if (N == P.getLeft())

parent.setLeft (L);
else

parent.setRight (L);
}
else {

// N is the root
N.setData (L.getData());
N.setRight (L.getRight());
N.setLeft (L.getLeft());

}
}

Binary Search Tree
// case 4: only right child
if (((N.getLeft() == null) && (N.getRight() != null)) {

BSTNode R = N.getRight()
if (P != null) {
if (N == P.getLeft())

parent.setLeft (R);
else

parent.setRight (R);
}
else {

// N is the root
N.setData (R.getData());
N.setRight (R.getRight());
N.setLeft (R.getLeft());

}
}

Binary Search Tree
// case 5: has both children
if (((N.getLeft() != null) && (N.getRight() != null)) {

// Get leftmost node of right tree
BSTNode LM = N.getRight().getLeftmostNode();

// replace the node’s data
N.setData (LM.getData());

// remove the leftmost node of right tree
BSTNode LMP = LM.getParent();
if (LM == LMP.getLeft()) LMP.setLeft (null);
else LMP.setRight(LM.getRight());

}
}}

Binary Search Trees (BST)

• Removal

– Questions

Binary Search Trees (BST)

• Print
– Use a traversal with the result of visiting a node

be a print

– What kind of traversal?

9

Binary Search Trees (BST)

• Print

public void print()

{

inorder();

}

Binary Search Trees (BST)

• Summary
– Binary Search Trees

• Insert
• Find
• Remove
• Print

– Questions?

