
1

Trees I

Definitions, Traversals, 
Binary Trees

Announcement

• Final Exam
– Wednesday, February 25, 2004
– 8:00am – 10:00 am
– 70-3435

• Please report all exam conflicts now!

Project 2 Notes

• Writeup now on the Web
• Due Dates:

– Minimum submission due Friday, Feb 6th

• Entry.java & Document.java
• Partial implementation of Directory.java provided 

– Final submission due Sunday, Feb 15th

• A little more than a week after the minimum! 
• Complete Directory.java & VFSystem.java
• Integration tests WILL be performed.

Questions

• On sorting, searching?

• Any other questions?

Trees

I think that I shall never 
see

A poem lovely as a tree

-- J. Kilmer

Trees

• In CS, we look at trees 
from the bottom up



2

Anatomy of a Tree

a

b c

d e f g

h i j

Root

Level 1

Level 2

Level 3

b,c are childen of a

a is the parent of b & 
c

This tree has a depth 
of 3

Internal 
nodes

Leaves

Anatomy of a Tree

• Subtree
– All children of a node, 

can be considered the 
root of it’s own tree

– These are called 
subtrees

– I smell recursion!

a

b c

d e f g

h i j

Anatomy of a Tree

• Balanced Tree
– A tree is balanced if all 

subtrees at the same 
level have the same 
depths

– This tree is not 
balanced since Node 
c’s subtree has a depth 
of 2 but Node b’s 
subtree has a depth of 
1.

a

b c

d e f g

h i j

What are trees good for?

• Hierarchical relationships
Performer

Actor Musician

isA isA

Guitarist Pianist Drummer

What are trees good for?

• Binary trees can be used to represent 
decision taxonomies

Mammal?

Bigger than a cat? Underwater?

Trout BirdElephant Mouse

yes

yes yes

no

no no

What are trees good for?

• Branching can also imply ordering of node 
data

45

30 55

50 6022 35

<

< <

>

> >



3

What are trees good for?

• Representing Hierarchical File Structures
– Hmmm…

– Questions?

\

bin src doc

assn1 assn2

C++ java

Anatomy of a Binary Tree

• Binary Tree
– Each node has at most 

2 children
– Children of nodes in a 

binary tree are referred 
to as left child or right 
child

• Node h is the left child 
of Node f

• Node i is the right child 
of Node f

a

b c

d e f g

h i

Anatomy of a Binary Tree

• Full Binary Tree
– A binary tree is full if 

• All of it’s leaf nodes are 
of the same depth

• Each non-leaf node has 
2 children

a

b c

d e f g

Anatomy of a Tree

• Complete Binary Tree
– A binary tree is

complete if 
• Each level (except the 

deepest) must contain 
as many nodes as 
possible

• At the deepest level, all 
nodes as as far left as 
possible

a

b c

d e f g

h i

Traversing a Tree

• A means to process all the nodes in a tree
– A traversal starts at the root
– Visits each node exactly once

• “Processes” the data in a node when visited

– Nodes can be visited in different orders
• Breadth-first traversal
• Depth-first traversal

– Preorder
– Inorder
– Postorder

Anatomy of a Tree

• Breadth-first
– All the nodes at a given 

level are visited before 
the nodes at the next 
level

– Example:
• a,b,c,d,e,f,g,h,i

a

b c

d e f g

h i



4

Anatomy of a Tree

• Pre-order
– At each node

• The node is visited first
• Pre-order traversal of 

the left subtree
• Pre-order traversal of 

the right subtree

– Example:
• a,b,d,h,i,e,c,f,g

a

b c

d e f g

h i

Anatomy of a Tree

• in-order
– At each node

• In-order traversal of the 
left subtree

• The node is visited next
• The In-order traversal 

of the right subtree

– Example:
• h,d,i,b,e,a,f,c,g

a

b c

d e f g

h i

Anatomy of a Tree

• post-order
– At each node

• Post-order traversal of 
the left subtree

• Post-order traversal of 
the right subtree 

• The node is visited next

– Example:
• h,i,d,e,b,f,g,c,a

a

b c

d e f g

h i

Implementing a Binary Tree

• Define a binary tree node object
• Each node can be seen as the root of a 

Binary Tree.

A Binary Tree Node Class

• Class BTNode
– Member variables

• data – data stored within the node (Object)
• leftChild – left subtree (BTNode)
• rightChild – right subtree(BTNode)
• parent – parent node (BTNode)

– Methods
• Constructors (for internal node, for leaf)
• Get methods (getData, getLeft, getRight, getParent)
• Set methods (setData, setLeft, setRight, setParent)
• Traversal methods (inorder, preorder, postorder, visit)

BTNode
public class BTNode {

protected Object data;
protected BTNode leftChild;
protected BTNode rightChild;
protected BTNode parent;

What about a tree that isn’t binary?



5

BTNode -- constructors
// Constructor for interior node
public BTNode (Object o, BTNode l, BTNode r) 
{

data = o;
parent = null;
setLeft (l);
setRight(r); 

}

// Constructor for a leaf
public BTNode (Object o) 
{

data = o;
parent = null;
setLeft (null);
setRight (null);

}

BTNode – get Methods
// get the Data

public Object getData()
{

return data;
}

// Get the left child
public BTNode getLeft ()

{
return leftChild;

}

// Get the right child
public BTNode getRight ()
{

return rightChild;
}

// Get the parent
public BTNode getParent ()
{

return parent;
}

BTNode – set Methods
// set the Data

public void setData(Object o)
{

data = o;
}

// Set the left child
public void setLeft (BTNode n)

{
leftChild = n;
if (n!= null) 

n.setParent (this);

}

// Set the right child
public void setRight (BTNode n)

{
rightChild = n;
if (n!= null) 

n.setParent (this);

}

// Set the parent

public void setParent (BTNode n)
{

parent = n;
}

BTNode – traversal

• Visit
– Default is to print
– Assume will be overridden by subclasses

public void visit()
{

System.out.println (data.toString());

}

BTNode – traversal

• Inorder
– Process left child
– Visit node
– Process right child

public void inorder()
{

leftChild.inorder();
visit();
rightChild.inorder();

}

BTNode – traversal

• But won’t this recursion go on forever?



6

BTNode – traversal

• Inorder
– Process left child
– Visit node
– Process right child

public void inorder()
{

if (leftChild != null) leftChild.inorder();
visit();
if (rightChild != null) rightChild.inorder();

}

Test Stop = do 
nothing

Continue

BTNode – traversal

• Pre-order, post-order
public void preorder()

{
visit();
if (leftChild != null) leftChild.preorder();
if (rightChild != null) rightChild.preorder();

}

public void postorder()
{

if (leftChild != null) leftChild.postorder();
if (rightChild != null) rightChild.postorder();
visit();

}

BTNode – let’s build a tree
public static void main (String args[])
{

// Level 2
BTNode h = new BTNode (“h”);
BTNode i = new BTNode (“i”);

// Level 1
BTNode d = new BTNode (“d”, h, i);
BTNode e = new BTNode (“e”);

// Root
BTNode root = new BTNode (“b”, d, e);

// Do an inorder traversal
root.inorder ();

}

b

d e

h i

What can we do with binary trees?

• Binary trees can be used to represent 
arithmetic expressions.
– Interior nodes are operator (+, --, *, /)
– Leaves are operands (numbers)
– Example

• 5 + 7 +

5 7

Operator

Operand

Expression trees

• The operand of one node, can itself be an 
expression
– Children nodes can be roots of their own 

subtrees
• Example:

– (2 * 3 ) + ((1 + 7) * 8)

Expression Trees

– (2 * 3 ) + ((1 + 7) * 8)

+

* *

2 3 + 8

1 7



7

Expression trees

• Evaluating expression trees
– Leaf nodes evaluate to the number that they 

represent
– Interior nodes:

1. Evaluate the left and right children
2. Apply appropriate operation on results of Step 1

What kind of traversal would this be?

Expression Trees

– (2 * 3 ) + ((1 + 7) * 8)

+

* *

2 3 + 8

1 7

2 3

6

1 7

8

64

8

70

Expression trees

• Let’s implement this

public class ExpressionTreeNode extends BTNode
{

public int eval();

}

Expression trees

public int eval()
{

int left = 0;
int right = 0;

if (leftChild != null) left = leftChild.eval();
if (rightChild != null) right = rightChild.eval();

if (data.equals (“+”)) return left + right;
else if (data.equals (“-”)) return left - right;
else if (data.equals (“*”)) return left * right;
else if (data.equals (“/”)) return left / right;
else return Integer.parseInt ((String)data);

}

Expression trees
public int eval() throws NumberFormatException
{

int left = 0;
int right = 0;

if (leftChild != null) left = leftChild.eval();
if (rightChild != null) right = rightChild.eval();

if (data.equals (“+”)) return left + right;
else if (data.equals (“-”)) return left - right;
else if (data.equals (“*”)) return left * right;
else if (data.equals (“/”)) return left / right;
else return Integer.parseInt ((String)data);

}

Summary

• Trees
• Binary Trees

– Implementation
– Example: Expression Trees



8

Binary Search Trees

• Branching can also imply ordering of node 
data

45

30 55

50 6022 35

<

< <

>

> >


