
1

Sorting II

Divide and Conquer Sorts

Announcement

• Final Exam
– Wednesday, February 25, 2004
– 8:00am – 10:00 am
– 70-3435

• Please report all exam conflicts now!

Announcement

• Course Withdrawal
– Last day to withdraw is this Friday, Jan 23rd

Announcement

• Project 2
– To go live later this week
– More Tomorrow

Sorting

• Any questions from yesterday?

Sorting

• Problem: Given an array of items, sort the
elements in the array
– Given:

• array of objects to be sorted (x)

– Calculation
• Sorts the objects in the collection such that

– x[i-1] <= x[i] for 0 < i < length of x

2

Evaluation

• Time Analysis
– Best case
– Worst case
– Average Case

Comparable

• Let’s generalize to sort for any object
– By this time, you are probably painfully aware

of the Comparable interface:
• public int compareTo(Object o)

• Compares this object with the specified object for order.
Returns a negative integer, zero, or a positive integer as
this object is less than, equal to, or greater than the
specified object.

• Assumes that o is of same class of object being compared
to.

Swap

• Swaps the item at one index of the array
with an object of another
– public void swap

(Comparable x[], int i, int j)

{
Comparable tmp = x[i];

x[i] = x[j];
x[j] = tmp;

}

Sort Algorithms
• Last Time

– Selection Sort
– Insertion Sort
– Bubble Sort

– All pretty much all Θ (n2) when it comes to
comparisons.

Sort Algorithms

– Divide and Conquer Sorts
• Today: Merge Sort
• Tomorrow: Quick Sort

• But first…
– Zen sorting

• See the sort, feel the sort, BE the sort.

Divide and Conquer

• Divide the elements to be sorted into two
groups of equal size

• Sort each of the smaller groups
• Combine the smaller groups into 1 larger

group

• Hmm: Smells like recursion to me!

3

Mergesort

• Like binary search, mergesort, divides the
array to be sorted in half:

Conquer each half

Merge back into one

Conquer each half

Divide into two

Mergesort
public void mergeSort
(Comparable x[], int low, int high) {

// Find the midpoint
int mid = (low + high) / 2;

// Do the sort
mergeSort (x, low, mid);
mergeSort (x, mid+1, high);

// Do the merge
merge (x, low, mid, high);

}

Mergesort

• But won’t this recursion go on forever?

Mergesort
public void mergeSort
(Comparable x[], int low, int high) {

// test to end recursion
if ((high – low) > 0) {

// Find the midpoint
int mid = (low + high) / 2;

// Do the sort
mergeSort (x, low, mid);
mergeSort (x, mid+1, high);

// Do the merge
merge (x, low, mid, high);

}
}

Mergesort
public void mergeSort
(Comparable x[], int low, int high) {

// test to end recursion
if ((high – low) > 0) {

// Find the midpoint
int mid = (low + high) / 2;

// Do the sort
mergeSort (x, low, mid);
mergeSort (x, mid+1, high)l

// Do the merge
merge (x, low, mid, high);

}
}

Test

Stop = do
nothing

Continue

Mergesort

• Let’s look at merge
– By the time we get to merge, we have 2 sorted,

smaller array portions
– Use a temp array to assemble the elements of

these smaller arrays back into a larger array.

4

Mergesort

• Merge
– Basic idea

• Compare smallest uncopied element of 1st array half
with smallest uncopied element of 2nd array half.

• Place smallest into the temporary array
• Iterate until all elements are copied into the temp

array
• Copy all elements from temp array back to original

array

Mergesort

Sorted

Temp array

Sorted

Index of next uncopied element Index of next uncopied element

Index of next open space in temp array

low mid mid+1 high

Compare: smallest get placed into next open space in temp array

Mergesort

Sorted

Temp array

Sorted

Index of next uncopied element Index of next uncopied element

All done with one half of the array

Index of next open space in temp array

low mid mid+1 high

Copy remainder of elements without comparing

Mergesort
private void merge
(Comparable x[], int low, int mid, int high) {

// create temp array
Comparable temp[] = new Comparable[high – low + 1];
int uc1 = low; // index of next uncopied in half 1
int uc2 = mid+1; // index of next uncopied in half 2
int next = 0; // next free slot in temp array;

// Do merge
while ((uc1 <= mid) && (uc2 <= high)) {

if (x[uc1].compareTo (x[uc2]) < 0) {
temp[next] = x[uc1]; uc1++;}

else { temp[next] = x[uc2]; uc2++;}
next++;

}

Mergesort

// at this point we’re done with one of the array halves
while (uc1 <= mid) {

temp[next] = x[uc1];
uc1++; next++;

}
while (uc2 <= high) {

temp[next] = x[uc2];
uc2++; next++;

}

// We’re done with the merge, copy from temp back to x
for (int i=0; i <= high-low; i++)

x[low+i] = temp[i];
}

Mergesort

• Analysis
– Real work is done in merge

• Merge does no swaps
– Does Θ (n) comparisons
– Does Θ (n) copies

• First recursive level, merge will merge n elements
– T(n) = Θ (n)

• Second recursive level, merge will merge n/2 element
– However, merge will be activated twice
– T(n) = Θ (n)

• Third recursive level, merge will merge n/4 elements
– However, merge will be activated four times
– T(n) = Θ (n)

5

Mergesort

• Analysis
– So on each recursive level

• T(n) = Θ (n)
– Since arrays are being split in half, there will be

log2 n recursive levels
– Runtime of complete algorithm

• Best case, worst case, avg case:
– Θ (n log n)

Mergesort

• Let’s compare with sorts from last class:

4,194,30422,5281024
262,1444608512
16,384896128

102416032
64248
422

n2n log nn

Mergesort

• Down side of mergesort
– That temp array

• Takes extra space
• Takes extra time to allocate

• Can speed up by having all calls to merge use the same temp
array

– Questions?
– Merge Sort Applet

Quicksort

• Like mergesort:
– Will divide the array into two portions
– Will sort each portion recursively
– Will merge sorted portions together once each

is sorted.
• Unlike mergesort

– Will not necessarily divide the array in half.

Quicksort

• In fact:
– In mergesort

• Array subdivision was trivial
• Merge was sophisticated

– In quicksort
• Array subdivision is sophisticated
• Merge is trivial.

Quicksort

• Basic idea:
– Find a value that belongs near the middle of the array

• Call this value the pivot

– Place all values less than the pivot before the pivot
location in the array

– Place all values greater than the pivot after the pivot
location in the array

– Apply this same algorithm to the potion of the array
before the pivot and the portion of the array after the
pivot.

6

Quicksort

Choose pivot

Move all elements less than the pivot
to lie before the pivot in the array

Move all elements less than the pivot
to lie after the pivot in the array

Apply same algorithm to
1st portion of array

Apply same algorithm to
2nd portion of array

Quicksort
public void quickSort
(Comparable x[], int low, int high) {

// Find the pivot
int pivotIdx = partition(x, low, high);

// recursively call on array portions
quickSort (x, low, pivotIdx -1);
quickSort (x, pivotIdx+1, high);

}

Quicksort

• But won’t this recursion go on forever?

Quicksort
public void quickSort
(Comparable x[], int low, int high) {

if ((high-low) > 0) {
// Find the pivot
int pivotIdx = partition(x, low, high);

// recursively call on array portions
quickSort (x, low, pivotIdx -1);
quickSort (x, pivotIdx+1, high);

}
}

Test

Stop = do
nothing

Continue

Quicksort

• Let’s take a look at partition
– partition will have to do 3 things:

1. Choose a pivot value
2. Place the pivot value in the correct spot in the

array
3. Arrange the other elements of the array so that

1. all less than the pivot lies before the pivot in the array
2. All greater than the pivot lies after the pivot in the array.

Quicksort

• partition
– Basic idea:

• Arbitrarily choose first element as your pivot
• Rearranging elements

– Starting from 2nd elem, going forward, find first element > pivot
– Starting from last elem, going backwards, find first element <

pivot
– Swap elements
– Continue as long as the two paths don’t cross

• Finally, move pivot element to where the paths cross.

7

Quicksort

Choose first to be the pivot

Staring from 2nd, iterate forward until you find
an element > pivot

Staring from last, iterate backwards until you
find an element < pivot

Swap them

Quicksort

Eventually, the paths will cross

This element is < pivot

This element is > pivot

Swap pivot

All elements before pivot
will be < pivot

All elements after pivot
will be > pivot

Return the index where the pivot ended up

Quicksort
public int partition(Comparable x[], int low, int high)
{

Comparable pivot = x[low];
int tooBigIdx = low + 1;
int tooSmallIdx = high;

while (tooBigIdx < tooSmallIdx) {
while ((tooBigIdx <= high) &&

(x[tooBigIdx].compareTo (pivot) <= 0))
tooBigIdx++;

while ((x[tooSmallIdx].compareTo(pivot) > 0))
tooSmallIdx--;

if (tooBigIdx < tooSmallIdx)
swap(x, tooBigIdx, tooSmallIdx);

}

Quicksort
// At this point, the elements of the array
// have been arranged correctly
// need to move the pivot to it’s rightful place
swap (x, low, tooSmallIdx);

return tooSmallIdx;
}

Quicksort

• Quicksort applet

Quicksort

• Analysis
– The work carried out by partition is Θ (n)
– In the best case, partition will place the pivot in

the exact middle of the array in which case log
n recursive calls will be made:

• Doing Θ (n) work, log n times = Θ (n log n)

8

Quicksort

• In the worst case:
– When array is already sorted

– Recursive calls will call quick sort on array
sizes of n, n-1, n-2, …, 1

• T(n) = n + (n-1) + (n-2) + … + 1 = Θ(n2)

Already < than remainder of array elements

Quicksort

• Can be shown:
– Average case: Θ (n log n)

• Summary:
– Best case: Θ (n log n)
– Average case: Θ (n log n)
– Worst case: Θ (n2)

• However,
– Quicksort does not require that temp array!
– Quicksort can do “less work” per unit of computation

• Copy vs. comparison

Quicksort

• We can avoid the worst case
– If we become more carefully about choosing

our pivot.
• Choose 3 values from array
• Make the median of the 3 be the pivot.

Summary

• Mergesort
– Best, worst, average:Θ (n log n)
– Needs temp array

• Quicksort
– Best, average: Θ (n log n)
– Worst: Θ (n2)
– Doesn’t need temp array
– Does “less work” per computation unit

Questions?

