
1

Sorting I

Simple Sorts

Project

– Minimum Submission Sunday night

– Final submission –Sunday.

– A couple days of breathing room
• Before Project 2

Plan

• Things to look forward to
– Analysis of Algorithms
– Search Algorithms
– Sort Algorithms (M, T)

– Return Exam 1
• Wasn’t here Wednesday? Please pick up after class.

– Distribute Project 2 (W)

Final Exam – Good news/bad news

• Good news
– Exam is mid-week and in this building:

• Wednesday, February 25, 2004
• 70-3435

• Bad news
– The time

• 8:00am – 10:00 am

• Please note all conflicts NOW!

Before we begin

• Any questions on
– Asymptotic Analysis
– Searching

Sorting

• Problem:
– Given:

• array of objects to be sorted (x)
– In our examples, this collection will be stored in an array

– Calculation
• Sorts the objects in the collection such that

– x[i-1] <= x[i] for 0 < i < length of x

2

Sorting

• Problem: Given an array of items, sort the
elements in the array
– Algorithms

• Selection Sort
• Insertion Sort
• Bubble Sort
• Merge Sort
• Quicksort

Evaluation

• Time Analysis
– “Basic Operation”

• Comparison
• object swap

– Best case
– Worst case
– Average Case

Swap

• Swaps the item at one index of the array
with an object of another
– public void swap (int x[], int i, int j)

{

int tmp = x[i];
x[i] = x[j];

x[j] = tmp;
}

Swap

• Let’s generalize to sort for any object
– By this time, you are probably painfully aware

of the Comparable interface:
• public int compareTo(Object o)

• Compares this object with the specified object for order.
Returns a negative integer, zero, or a positive integer as
this object is less than, equal to, or greater than the
specified object.

• Assumes that o is of same class of object being compared
to.

Swap

• Swaps the item at one index of the array
with an object of another
– public void swap

(Comparable x[], int i, int j)

{
Comparable tmp = x[i];

x[i] = x[j];
x[j] = tmp;

}

Sort Algorithms

• Selection Sort
• Insertion Sort
• Bubble Sort
• Merge Sort
• Quicksort

• Let’s begin

3

Selection sort

• Basic idea
– Iterate through the elements of x

• For index i, “select” the smallest element of the
array from index i to end of the array and swap it
with x[i].

• After i iterations, the smallest i elements will occupy
x[0] … x[i-1] in sorted order.

Selection sort

• Basic idea
– On iteration index i

…

n -10 i

Already sorted Select smallest from here

swap with x[i]

Selection sort
public void selectSort (Comparable x[])
{

for (int i=0; i < x.length; i++) {
int small = x[i];

for (int j=i; j<x.length; j++)
if (x[j].compareTo(x[small]) < 0)

small = j;
swap (x, i, small);

}

}

Selection sort

• Example

Selection sort

• Analysis
– Comparisons:

• In the first iteration n comparisons are made
• In the second iteration n-1 comparisons are made
• In the third iteration n-2 comparisons are made.
• And so on…
• Total for all iterations:

– T(n) = 1 + 2 + 3 + … + (n-1) + n = n(n-1) / 2 = Θ (n2)

Selection sort

• Analysis
– Swaps

• A swap is made once per iteration (if needed)
– Best case:

» array already sorted (no swaps needed)
» T(n) = c = Θ (1)

– Worst case
» Swaps always needed
» T(n) = n = Θ (n)

– Average case
» Swaps needed half the time
» T(n) = 0.5n = Θ (n)

4

Sort Algorithms

• Selection Sort
• Insertion Sort
• Bubble Sort
• Merge Sort
• Quicksort

Insertion sort

• Basic idea
– Iterate through the elements of x (from 1 to n-1)

• On pass i, the element at x[i] will be “inserted” into
it’s rightful place within the elements of x[0] … x[i-
1].

• Other elements in x[0]…x[i-1] will be shifted
accordingly.

Insertion sort

• Basic idea
– On iteration index i

…

0 i

Already sorted

n -1

Will be placed in correct
place within x[0]…x[i-1]

Insertion sort
public void insertSort (Comparable x[])
{

for (int i=1; i < x.length; i++) {
Comparable temp = x[i];
for (int j=i; j >=0; j--) {

if (j == 0 || (x[j-1].compareTo(temp) < 0)) {
// insert
x[j] = temp;
break;

}
else {

// shift
swap (x, j, j-1);

}
}

}

Insertion sort

• Example

Insertion sort

• Analysis
– Comparisons:

• In each iteration of the outer loop we will make a comparison
as long as x[i] is out of order

• Best case (array is already sorted):
– Will only have to make 1 comparison per iteration.
– This will mean n comparisons = Θ (n)

• Worst case (array is sorted in reverse)
– Will have to make i comparisons per iteration
– This will mean 1 + 2 + 3 + … + (n-1) + n comparisons = Θ (n2)

5

Insertion sort

• Analysis
– Comparisons:

• Average case:
– Inner for loop will stop, on average, after half of the

insertions have been performed
– Average case = 0.5 worst case
– Θ (n2)

Insertion sort

• Analysis
• Swaps

– In each iteration of the outer loop we will make
a swap as long as x[i] is out of order

• Best case (array is already sorted):
– Will only have to make 0 swaps per iteration.
– This will mean 0 swaps = Θ (1)

• Worst case (array is sorted in reverse)
– Will have to make i swaps per iteration
– This will mean 1 + 2 + 3 + … + (n-1) + n swaps = Θ (n2)

Insertion sort

• Analysis
– Swaps:

• Average case:
– Inner while will stop, on average, after half of the swaps

have been performed
– Average case = 0.5 worst case
– Θ (n2)

Sort Algorithms

• Selection Sort
• Insertion Sort
• Bubble Sort
• Merge Sort
• Quicksort

Bubble sort

• Basic idea
– Iterate through the elements of x (from 0 to n-1)

• Compare adjacent elements and have the larger
element “bubble” to the bottom of the array

• After the ith iteration, the last i elements of the array
will be properly sorted

Bubble sort

…

0

Already sorted

n -1i
end here

Have smaller element
bubble to the front

6

Bubble sort
public void bubbleSort (Comparable x[])
{

for (int i=0; i < x.length-1; i++) {
for (int j=x.length-1; j > i; j--)

if (x[j-1].compareTo(x[j]) < 0)
swap (x, j, j+1);

}
}

Bubble sort

• Example

Bubble sort

• Analysis
– Comparisons

• First iteration n-1 comparisons are made
• Second iteration n-2 comparisons are made
• And so on

• T(n) = (n –1) + (n – 2) + … + 1 = n(n-1)/2 =
• Θ (n2)

Bubble sort

• Can we do better?
– If we go through an iteration and none of the

elements are swapped during that iteration, then
we know we are done.

Better Bubble Sort
public void bubbleSort (Comparable x[])
{

boolean swapMade = true;
for (int i=0; (i < x.length-1 || !swapMade);
i++) {

swapMade = false;
for (int j=x.length-1; j > i; j--)

if (x[j-1].compareTo(x[j]) < 0)
swap (x, j, j+1);
swapmade = true;

}
}

}

Better Bubble Sort

• With the better bubble sort
– If the array is initially sorted, only 1 iteration would be

performed:
• Best case:

– Only n-1 comparisons = Θ (n)
• Worst case:

– Array is sorted in reverse…all iterations required
– Θ (n2)

• Average case:
– Array will be sorted after performing half the iterations
– Half of the worst case = Θ (n2)

7

Better Bubble Sort

• Swaps
– In each iteration of the outer loop we could make at

most, a swap with every comparison.
• Best case (array is already sorted):

– Will only have to make 0 swaps.
– This will mean 0 swaps = Θ (1)

• Worst case (array is sorted in reverse)
– Will have to swap every time we compare
– Θ (n2)

• Average case
– Θ (n2)

Summary

Best: Θ (1)
Worst: Θ (n2)
Avg: Θ (n2)

Best: Θ (n)
Worst: Θ (n2)
Avg: Θ (n2)

Bubble

Best: Θ (1)
Worst: Θ (n2)
Avg: Θ (n2)

Best: Θ (n)
Worst: Θ (n2)
Avg: Θ (n2)

Insertion

Best: Θ (1)
Worst: Θ (n)
Avg: Θ (n)

Best: Θ (n2)
Worst: Θ (n2)
Avg: Θ (n2)

Selection

SwapsComparisons

Sort Algorithms

• Selection Sort
• Insertion Sort
• Bubble Sort
• Merge Sort
• Quicksort

Next time

• Sorting
– MergeSort
– Quicksort

