
1

Searching

Searching

• Problem: Given a collection of items, return
whether a given item is in that collection
– Two algorithms

• Linear Search
• Binary Search

Searching

• Problem:
– Given:

• Collection of objects to be searched (x)
– In our examples, this collection will be stored in an array

• Object that we are searching for (key)

– Returns
• Boolean value indicating if key was found in x

Evaluation

• Time Analysis
– “Basic Operation” = comparison
– Best case
– Worst case
– Average Case

• Data storage
– Sorted vs. unsorted
– Random-access (array) vs. List

Linear Search

• Basic idea
– Go through the collection, one element at a

time, and test if each element is equal to key.
• If “yes”, immediately return true
• Continue until all elements have been tested.
• After all elements have been tested unsuccessfully

– Return false

Linear Search
public boolean linearSearch

(int x[], int key) {
for (int i=0; i < x.length; i++) {

if (x[i] == key)
return true;

}
return false;

}

2

Linear Search

• Example
– Linear Search applet

• Link

Linear Search

• Example
– Things to note:

• When key was in the array, the number of
comparisons depends upon it’s location in the array.

• When key was not in the array, all elements had to
be compared. Number of comparisons equaled the
length of the array.

Linear Search

• Time Analysis
– Best case

• when key is located at x[0].
• T(n) = 1 = Θ (1)

– Worst case
• When key is not in array
• T(n) = n = Θ (n)

Linear Search

• Time Analysis
– Average case

• If you consider cases when key is in the array
– Average case is when key is in middle of array
– T(n) = 0.5n = Θ (n)

• However, if we consider that in the “average” case, key will
not be in the array

– Average case would required going through the entire array
– T(n) = n = Θ (n)

• In either case T(n) = Θ (n)

Linear Search

• Data Storage
– Note that since LinearSearch handles each

elements in sequential order:
• Algorithm works:

– Random access collections
– Linear collections
– When data is not sorted
– When data is sorted

Linear Search

• Summary
– Go through the collection, one element at a

time, and test if each element is equal to key.
– Time Analysis

• Best case: T(n) = Θ (1)
• Worst case, avg case: T(n) = Θ (n)

– Works for
• Sorted or unsorted data
• Random access or linear access collections

3

Binary Search

• Basic idea
– Major assumption: The collection is sorted!
– Consider the element in the middle of the list

(mid):
• If it is equal to key, return true
• Otherwise

– if (key < mid)
» Run search on the first half of the collection

– If (key > mid)
» Run same search on 2nd half of collection

Binary Search
public boolean binarySearch (int x[], int key) {

int low =0; int high = x.length-1;
while (low < high)
{

mid = (low + high) / 2;
else if (x[mid] < key)

low = mid + 1;
else

high = mid - 1;
}
if (mid[low] == key) return true;
else return false;

}

Binary Search

• Example
– Binary Search Applet

• Andrzej Czygrinow (Arizona State University)
• Link

Binary Search

• Things to note
– Algorithm will always continue until low == high.

• This takes log n comparisons
• Best case, worst case, average case:

– T(n) = Θ (log n)

– Algorithm only works if data is sorted
– Array accesses are not in sequential order

• Algorithm works best for a random access collection

– Let’s try to tweak the algorithm a bit

Binary Search
public boolean binarySearch (int x[], int key) {

int low =0; int high = x.length-1;
while (low <= high)
{

mid = (low + high) / 2;
if (x[mid] == key) return true;
else if (x[mid] < key)

low = mid + 1;
else

high = mid - 1;
}
return false;

}

Binary Search

• Things to note
– If key is found at the middle of the array, it is

returned immediately after only one
comparison:

• Best case:
– T(n) = 1 = Θ (1)

– Otherwise, search is performed on half the
array

• worst case, average case:
– T(n) = Θ (log n)

4

Binary Search

• Let’s compare to Linear Search
– Worst case:

66464
201,048,5761,048,576

53232
41616
O(log n)O(n)
BinaryLinear

Binary Search

• Basic idea
– Major assumption: The collection is sorted!
– Consider the element in the middle of the list (mid):

• If it is equal to key, return true
• Otherwise

– if (key < mid)
» Run search on the first half of the collection

– If (key > mid)
» Run same search on 2nd half of collection

– This algorithm just cries out for a recursive solution!

Binary Search
public boolean binarySearch
(int x[], int key, int low, int high) {

mid = (low + high) / 2;
if (x[mid] == key) return true;

else if (x[mid] < key)
return binarySearch (x, key, mid+1, high);

else
return binarySearch (x, key, low, high-1);

}

Binary Search

• But won’t this recursion go on forever?

Binary Search

• Yes!
– Recursion stops when

• The middle element of the array section we are
looking at is equal to key (we check for this)

• Or

• When the array section we are looking at is only 1
element long

Binary Search
public boolean binarySearch
(int x[], int key, int low, int high) {

if (high == low)
return (x[high] == key);

mid = (low + high) / 2;
if (x[mid] == key) return true;
else if (x[mid] < key)

return binarySearch (x, key, mid+1, high);
else

return binarySearch (x, key, low, high-1);
}

5

Recursive method

• Recall:
– Three necessary components for a recursive

method:
1.A test to stop or continue the recursion
2.An end case that stops the recursion
3.A recursive call that continues the recursion.

Binary Search
public boolean binarySearch
(int x[], int key, int low, int high) {

if (high == low)
return (x[high] == key);

mid = (low + high) / 2;
if (x[mid] == key) return true;
else if (x[mid] < key)

return binarySearch (x, key, mid+1, high);
else

return binarySearch (x, key, low, high-1);
}

Test
Stop

Continue

Binary Search

• Summary
– Compare key with element at middle of collection and

apply search to either the first half or second half of
collection

• Iterative and Recursive solutions
– Time Analysis

• Best case (when optimized): T(n) = Θ (1)
• Worst case, avg case: T(n) = Θ (log n)

– Faster than linear search but…
• Works only when data is sorted
• Will only perform as listed above for random access

collections like arrays.

Searching

• Questions?

Linear Search: sample code

• Let’s generalize to search for any object
– Object class contains an equals method.

• public boolean equals(Object obj)
– Returns a boolean indicating whether some other object is

"equal to" this one.

Linear Search
public boolean linearSearch

(Object x[], Object key) {
for (int i=0; i < x.length; i++){

if (x[i].equals(key))
return true;

}
return false;

}

6

Binary Search: sample code

• Let’s generalize to search for any object
– Comparable interface:

• public int compareTo(Object o)
• Compares this object with the specified object for order.

Returns a negative integer, zero, or a positive integer as
this object is less than, equal to, or greater than the
specified object.

• Assumes that o is of same class of object being compared
to.

General Binary Search
public boolean binarySearch
(Comparable x[], Comparable key, int low, int
high) {
if (high == low)

return (x[high].equals(key));

int mid = (low + high) / 2;
if (x[mid].equals(key)) return true;
else if ((x[mid].compareTo(key)) < 0)

return binarySearch (x, key, mid+1, high);
else

return binarySearch (x, key, low, high-1);
}

Sample code: Search class

• In main:
– Creates an array of random Integer values

guaranteed to have value 7 and not to have
value 12.

• Length of test array is a commandline argument

– Performs binary and linear searches on arrays
looking for 7 and 12

– Counts the number of comparisons made

Sample code: Search class

• Method binarySearch()
public boolean binarySearch (Comparable x[],

Comparable key)
{

// clear number of compares
n_comp = 0;

// start a recursive binary search
return binarySearch (x, key, 0, x.length - 1);

}

private binarySearch class

Sample code: Search class

• Running the tests:
– java Search 100

• Linear Search

• Found 7 using 30 comparisons

• Did not find 12 using 100 comparisons

• Binary Search

• Found 7 using 25 comparisons
• Did not find 12 using 25 comparisons

Sample code: Search class

• Running the tests:
– java Search 1000

• Linear Search

• Found 7 using 797 comparisons

• Did not find 12 using 1000 comparisons

• Binary Search
• Found 7 using 49 comparisons

• Did not find 12 using 49 comparisons

7

Sample code: Search class

• Running the tests:
– java Search 1000000

• Linear Search

• Found 7 using 946218 comparisons

• Did not find 12 using 1000000 comparisons

• Binary Search

• Found 7 using 127 comparisons
• Did not find 12 using 127 comparisons

Search

• Any questions?

