
1

Recursion II

Methods that call themselves

Reminder

• 1st Exam
– Tomorrow
– Will cover

• Inheritance
• Exceptions

– 10-20 questions
– Variety of question types

• Short answer
• Fill in the code
• Step through the code
• Perhaps some multiple choice

Recursive Methods

• A recursive method is one that can call
itself
Non-recursive
methodA() {

…

methodB ();

…

}

Recursive
methodB() {

…

methodB ();

…

}

Components of a recursive methods

• Three necessary components for a
recursive method:

1. A test to stop or continue the recursion
2. An end case that stops the recursion
3. A recursive call that continues the recursion.

Towers of Hanoi

• 3 pegs and N disks (of different sizes)
• Starting with all N disks on one peg

– Move all N disks to another peg
• Can only move one peg at a time
• You can never place a larger peg on top of a smaller

peg.

Towers of Hanoi

GoalStart

2

Towers of Hanoi

• Let’s see the game in action
– Two of many Tower of Hanoi applets on the

Web
– http://www.cut-the-knot.com/recurrence/hanoi.html
– http://www.stlukes.new-canaan.ct.us/faculty/kress/hanoi.html

Towers of Hanoi

• Recursive solution
– Forget for a moment that you can only move 1

disk at a time
• Define a source, destination, and “spare” peg
• Move the top N-1 disks from your source peg to

your “spare” peg
• Move the Nth disk from your source to your

destination peg
• Move the top N-1 disks from your spare to your

destination

Towers of Hanoi

Step 1

Move N-1 disks
from source to

spare

Step 2

Move Nth disk
from source to

destination

Step 3

Move N-1 disks
from spare to
destination

Towers of Hanoi

Note that this is just a smaller version
of the Tower of Hanoi puzzle with N-1
disks (RECURSION!)

Towers of Hanoi
public void hanoi (int N, // number disks

int src, // source
int dest, // destination
int spare) // spare

{
// Step 1: move N-1 disks to spare
hanoi (N-1, src, spare, dest);

// Step 2: move Nth disk to destination
moveOne (src, dest);

// Step 3:move N-1 disks from spare to destination
hanoi (N-1, spare, dest, src)

}

Tower of Hanoi

• But can’t recursion go on forever?

3

Towers of Hanoi

• The recursion stops when n = 1
– Then there’s only one disk to move,
– So simply move it.

Tower of Hanoi
public void hanoi (int N, // number disks

int src, // source
int dest, // destination
int spare) // spare

{
if (N == 1) moveOne (src, dest)
else {

// Step 1: move N-1 disks to spare
hanoi (N-1, src, spare, dest);

// Step 2: move Nth disk to destination
moveOne (src, dest);

// Step 3: move N-1 disks from spare to destination
hanoi (N-1, spare, dest, src)

}
}

Tower of Hanoi
public void hanoi (int N, // number disks

int src, // source
int dest, // destination
int spare) // spare

{
if (N == 1) moveOne (src, dest)
else {

// move N-1 disks to spare
hanoi (N-1, src, spare, dest);

// move Nth disk to destination
moveOne (src, dest);

// move N-1 disks from spare to destination
hanoi (N-1, spare, dest, src)

}
}

Test
Stop

Continue

Towers of Hanoi
public class Hanoi {

// some arrays that keep track of which
// disks are on which pegs
...
public Hanoi () {}
public void hanoi (int n, int src, int dest, int
spare) { ... }
public void moveOne (int src, int dest) { ... }

public static void main (String args[])
{

Hanoi H = new Hanoi();
H.hanoi (nDisks, 0, 1, 2);

}
}

Recursion and Stacks

• When Java calls a method, it places info
related to that method on a call stack
– When a method is called, it’s info is pushed

onto the call stack
– When a method is done, it’s info is popped off

the call stack
– The top of the stack holds info for the current

method being executed.

Recursion and Stacks
Non-recursive
methodA() {

…

methodB ();

…

}

methodB () {

…

}

methodA methodA

methodB

methodA

Before
call to

MethodB

During
call to

MethodB

After call
to

MethodB

4

Recursion and Stacks
Recursive
methodB() {

…

methodB ();

…

}

methodB methodB

methodB

methodB

Before
recursive

call

During
recursive

call

After
recursive

call

Back to Hanoi

• Let’s map out what happens when solving
the Tower of Hanoi with 3 disks.
– Disks will start on peg 0
– Disks will end up on peg 1
– Peg 3 will be our spare
– hanoi (3, 0, 1,2)

Tower of Hanoi
hanoi(3,0,1,2)

src: 0 dest:1 spare:2

Step 1: call hanoi(2,0,2,1)
(3,0,1,2) S1

(3,0,1,2) S1+

(2,0,2,1) S1

hanoi(2,0,2,1)

src: 0 dest:2 spare:1

Step 1: call hanoi(1,0,1,2)

Tower of Hanoi

(3,0,1,2) S1+

(3,0,1,2) S1+

(2,0,2,1) S2

hanoi(1,0,1,2)

src: 0 dest:1 spare:2

Stop: move(0,1)

(1,0,1,2) St

hanoi(2,0,2,1)

src: 0 dest:2 spare:1

Step 2: move (0,2)

(2,0,2,1) S1+

Tower of Hanoi

(3,0,1,2) S1+

(3,0,1,2) S1+

(2,0,2,1) S3

hanoi(2,0,2,1)

src: 0 dest:2 spare:1

Step 3: hanoi(1,1,2,0)

(2,0,2,1) S3+

(1,1,2,0) St

hanoi(1,1,2,0)

src:1 dest:2 spare:0

Stop: move(1,2)

(3,0,1,2) S1+

(2,0,2,1) S3+

(3,0,1,2) S1+

Tower of Hanoi

(3,0,1,2) S2

(3,0,1,2) S3

hanoi(3,0,1,2)

src: 0 dest:1 spare:2

Step 2: move(0,1)

hanoi(3,0,1,2)

src: 0 dest:1 spare:2

Step 3: hanoi(2,1,0,2)

5

Tower of Hanoi

(3,0,1,2) S3+

(3,0,1,2) S3+

hanoi(2,2,1,0)

src: 2 dest:1 spare:0

Step 1: hanoi(1,2,0,1)(2,2,1,0) S1

(2,2,1,0) S1+

(1,2,0,1) St

hanoi(1,2,0,1)

src: 2 dest:0 spare:1

Stop: move(2,0)

Tower of Hanoi

(3,0,1,2) S3+

(3,0,1,2) S3+

hanoi(2,2,1,0)

src: 2 dest:1 spare:0

Step 2: move(2,1)(2,2,1,0) S2

(2,2,1,0) S3

hanoi(2,2,1,0)

src: 2 dest:1 spare:0

Step 3: hanoi(1,0,1,2)

Tower of Hanoi

(3,0,1,2) S3+

hanoi(1,0,1,2)

src: 0 dest:1 spare:2

Stop: move(0,1)(2,2,1,0) S3+

We are done!

(1,0,1,2) St

(3,0,1,2) S3+

(2,2,1,0) S3+

(3,0,1,2) S3+ empty

Tower of Hanoi

• Things to note
– Recursive functions can be void
– Recursive functions can all operate on the same

underlying data structure.
– Iterative solution to Tower of Hanoi problem

would be difficult to describe.

Tower of Hanoi

• Questions?

Summary

• Recursion – When a method calls itself
• Components of a recursive method

– Test
– Stop
– Continue

• Recursion, Method calls, and stacks
• Tower of Hanoi.

6

Next time

• Exam tomorrow

• Questions?

