
1

Project 1

The Grocery Store Simulation

Grocery Store Simulation

• Project 1: Grocery Store Simulation
– Handouts / Description now on Web site

– Due Dates:
• Minimum Effort Due: January 9, 2004
• Full Project Due: January 17, 2004

Grocery Store Simulation

• CS2 Newsgroup
– rit.cs.courses.4003.232

Grocery Store Simulation

• Goal for this project is to simulate the
register area of a large grocery store.

• Rules:
– Store has a number of registers

• Number of registers read in from standard in
• Each register will have a queue (line) associated

with it.
• All lines are the same (no express, coupon only, no-

candy lines)

Grocery Store Simulation

• Customer Entering a line
– When a customer is ready to check out:

• Will go to the register with the smallest line

• Cashing out:
– When a cashier is not busy, he/she will cash out

the customer at the front of the queue
– After checkout, the customer leaves the store

and the cashier checks out the next customer.

Grocery Store Simulation

• Simulation:
– Input:

• A random number generator seed
• Average rate of arrival of customers
• Average service time for cashiers
• Number of registers
• Amount of time to run the simulation

2

Grocery Store Simulation

• Simulation:
– Simulation loop (for passage of one unit of time)

• Customer generator is asked for a list of new customers
• Each new customer places his/her self onto a register queue
• Each register checkout determines if current customer is done

– If yes, update statistics for the register and get next customer
from the queue (if there is one)

• Update your clock

Grocery Store Simulation

• Simulation:
– Statistics collected:

• Average customer service time
• Average customer waiting time
• Average cashier idle time

– No work actually done…this is a simulation

– Questions so far?

Grocery Store Simulation

• Specification:
– To run:

• java GroceryStore

– Input:
• From standard input (System.in)

– Random Number seed (int)
– Average customer arrival rate (double)
– Average service time (double)
– Number of cashiers (int)
– Total time for simulation (int)

• Must check data format..if incorrect print error and terminate.

Grocery Store Simulation

• Specification:
– Output:

• Must print collected statistics after the simulation is
complete.

• Since no “real” work is done, diagnostics will be
printed to indicate what is going on with the
simulation.

Grocery Store Simulation

• Classes:
– GroceryStore

• Main program for running simulation
– Clock

• Time keeper for the simulation
– CustomerQueue

• Models the lines for each register
• When a customer is added – message is printed
• When a customer is removed – message is printed.

– Customer
• Models the customers in the system
• Can determine shortest line and place themselves on the

shortest line.

Grocery Store Simulation

• Classes:
– Register

• Models the cash registers.
• Maintains a queue
• Service Customer (checkIfCustomerDone())
• Must keep track of

– Total customers serviced
– Total time servicing customers
– Total time spent in queue
– Total idle time

3

Grocery Store Simulation

• Classes:
– CustomerGenerator

• Generates random set of customers for each time tick.
– InvalidValueException

• Thrown during invalid data entry
– ExponentialRandom

• Determines time until next event
• Used by CustomerGenerator

– PoissonRandom
• Determine number of events per unit of time
• Used by CustomerGenerator

Your Job…

• Write the classes:
– Javadocs included for all classes

• Clock

• CustomerQueue

• Customer

• Register

– Please use RCS
– java files supplied for GroceryStore &
InvalidValueException (in RCS)

– .class files suppied for all other classes.

Important Algorithms/Data Structures

• Data Structures
– Queue

• Algorithms
– Running the simulation
– Finding the shortest line
– Servicing a customer

Circular Queue

• Queue
– New items get placed at the end of the queue
– Items get removed from the front of the queue

• First in / First Out (FIFO)

In hereOut here

Circular Queue

• Queue methods
– add – Places a new object at the rear of the queue
– getFront – return object at front of queue without

removing it.
– getSize – returns number of elements in the queue
– isEmpty – returns a boolean indicating if the queue is

empty
– isFull – returns a boolean indicating if the queue is full
– remove– Removes and returns element at the front of

the queue

Circular Queue

• Implementation
– Place data in an array
– Keep track of the front and rear of the queue
– Keep track of number of elements

• Let’s see this in action.

4

Circular Queue

• For the CustomerQueue:
– Must be dynamic
– When full, and a new Customer is added,

• Must make the queue larger.
• Initial array size = 5

– isFull will always return false!

Running the Simulation

Finding the Shortest Line Servicing a Customer

1. Check to see if we need to begin serving a
new customer

2. Check to see if the current customer is
finished

Need new customer?

• If we are finished with current customer:
– Check to see if there is anyone behind him or her in the

queue.
• Yes, there are customers:

1. Remove the next customer from the queue and make him or her
the current customer.

2. Remember the time this customer will require to be serviced.
• No, there are no customers:

– Increment the idle time by 1 time unit.

• If we are not finished with this customer, proceed
to step 2.

Finished with current customer?

• If there is time left:
1. Decrement the time left on this customer.
2. Is there still time left on this customer?

• Time left: do nothing.
• No time left:

1. Record the data for the final statistics reporting.
2. Set the current customer to null

• Otherwise, do nothing.

5

Testing your work

• You can use try to test out your classes
– try cs2-grd project1-test infile

• Will run our solution on test data in file infile
• You can redirect the output into a file and then compare with

our output
– try cs2-grd project1-test infile > correctSolution
– java GroceryStore < infile > mySolution
– diff mySolution correctSolution

• Can also submit your own java files to test
– try cs2-grd project1-test infile
somefile.java

– Sample input files include in /data directory of jar file.
– Be sure that output matches exactly!

Submissions

• 4 submissions
– Minimum: Clock.java / CustomerQueue.java

• due 1/9/04
• Need stubbed Customer class.

– Submission 2: Customer.java / Register.java
• due 1/17/04

• All submissions via try

• NO LATE SUBMISSIONS!

Submissions

• About the minimum submission
– Clock.java & CustomerQueue.java is the

minimum reasonable effort requirement for this
project

• Due January 9, 2004
– Must submit Clock.java & CustomerQueue.java

successfully by Jan 9.
• Otherwise, you fail the course

– Advice: Submit Before Break!!!

Grading

• 100 points for functionality
– Up to 35 point deduction for bad implementation
– Up to 30 point deduction for bad style

• Including non-use of RCS

• Submission percentages
– Clock – 10 %
– CustomerQueue – 20%
– Customer – 30 %
– Register – 30%
– All Together – 10 %

Questions?

• Tomorrow:
– Java I/O

