
1

Linked List II

Doubly Linked Lists

Reminder

• Project 1
– If not already picked up, do so after class.
– Still have some Exam 1’s left

• Project 2
– Due this Sunday

• Submit early!
• Submit often!

– Miss the minimum? Please see me after class.

– Questions?

Exam 2

• Will return after doubly linked lists.

Announcement

• Final Exam
– Wednesday, February 25, 2004
– 8:00am – 10:00 am
– 70-3435

Any questions Linked Lists
• Sequence of elements

– arranged one after the other
– Each element has

• Some piece of data
• a link to the next element in the sequence
• The “next” link for the last element is null.

– Basic linked list need not be sorted.

3 9 7

2

Linked Lists

• Implementation
– Like with trees, a list can be seen as a collection

of “nodes”
– The head of a list is the first node in the list
– The tail of a list is the last node in the list.

3 9 7

node

head tail

Linked List – Remove

• Removing an interior node
– Need a reference to the node before the node to be deleted (loc)
– Loc’s next will point to whatever the deleted node’s next was

pointing to.

3 9 7

5loc

Linked List – Find

• Finding an item in a linked list
– Basic idea

• Start at head of the list
• Follow the links until

– Object searched for is found or
– End of the list is reached.

3 9 7

head

Linked List – Remove

• Remove is a bit awkward
– Suppose we want to remove the node returned

by find.
• We’ll need to maintain a pointer to the node before

this node.
• Very cumbersome.
• Possible solution

– Have a node have a pointer to it’s previous element in the
list as well.

• Doubly-linked list

Doubly Linked Lists
• Sequence of elements

– Each element has
• Some piece of data
• a link to the next element in the sequence

– The “next” link for the last element is null.

• a link to the previous element in the sequence
– The “prev” link for the first element is null.

3 9 7

Doubly Linked Lists

• Implementation
– Like with trees, a list can be seen as a collection

of “nodes”
– The head of a list is the first node in the list
– The tail of a list is the last node in the list.
– Allows for forward and backwards traversal

node
head

tail3 9 7

3

Doubly Linked Lists

• Implementation

public class DListNode {
Object data;
DListNode next;
DListNode prev;

}

DListNodes

• Operations on DListNodes
– Constructor

• initialData – data to be placed in the node
• initialNext – reference to next node
• initialPrev – reference to previous node

– Get Methods
• Object getData()
• DListNode getNext()
• DListNode getPrev()

– Set Methods
• setData(Object O)
• setNext (DListNode N)
• setPrev (DListNode N)

DListNodes – constructor
public DListNode (Object initialData, DListNode

initialNext, DListNode initialPrev)
{

// set your data
data = initialData;

// set your next
setNext (initialNext);

// set prev
setPrev(initialPrev);

}

DListNodes – setMethods
public void setNext (DListNode N)
{

if (next != N) {
next = N;
if (N != null) N.setPrev (this);

}
}

public void setPrev (DListNode N)
{

if (prev != N) {
prev = N;
if (N != null) N.setNext (this);

}
}

Doubly Linked List

• Let’s create a simple list:
// Add the 7
DListNode head = new DListNode (new Integer(7), null,

null);

// Add the 9
head = new DListNode (new Integer(9), head, null);

// Add the 3
head = new DListNode (new Integer(3), head,null); 7

head

9

3

Doubly Linked List
• Let’s create a simple list (another way)

// Add the 3
DListNode head = new DListNode (new Integer(3), null,null);
DListNode tail = head;

// Add the 9
DListNode tmp = new DListNode (new Integer(9), null, tail);
tail = tmp;

// Add the 7
tmp = new DListNode (new Integer(7), null, tail);
tail = tmp;

3

head

tail

9

tmp

7

4

Doubly Linked List

• Operations on entire list
– Find
– Add
– Remove

Doubly Linked List – Find
public DListNode find (DListNode head, Object

target)
{

DListNode found = null;
DListNode cur = head;
while ((found == null) && (cur != null)) {

if (target.equals (cur.getData())
found = cur;

else
cur = cur.getNext();

}
return found

}

Doubly Linked List – Find
public DListNode findBackwards (ListNode tail,

Object target)
{

DListNode found = null;
DListNode cur = tail;
while ((found == null) && (cur != null)) {

if (target.equals (cur.getData())
found = cur;

else
cur = cur.getPrev();

}
return found

}

Doubly Linked List – Add

• Adding will depend on where you wish to
add the new node
– Add before the head of the list
– Add to the interior of the list

Doubly Linked List – Add

• Adding before the head of the list
– Make the new node the new head

3 9 7

head
5

Doubly Linked List – Add
// Add the 7
DListNode head = new DListNode (new Integer(7), null,

null);

// Add the 9
head = new DListNode (new Integer(9), head, null);

// Add the 3
head = new DListNode (new Integer(3), head, null);

5

Doubly Linked List – Add

• Adding to the interior of the list
– Need a reference to the node before the location of the new node (loc)

– New node’s next will point to whatever loc’s next is pointing to
– loc.next will point to new node
– prev pointers will get updated appropriately.

3 9 7

5loc

Doubly Linked List – Add
public void addAfter (DListNode loc,
Object target)

{
DListNode tmp = new DListNode (target,

loc.getNext(),
loc);

}

Doubly Linked List – Remove

• Remove will depend on where the node you
wish to remove is
– Removing the node at the head of the list
– Removing an interior node.

Doubly Linked List – Remove

• Removing the node at the head of the list
– Have the head point to the node after the old

head
• head = head.getNext();

• head.setPrev (null);

3 9 7

head
5

Doubly Linked List – Remove

• Removing an interior node
– Need a reference to the node to be deleted (loc) (NOT the node

before)
– Set loc’s next to be loc’s prev’s next

3 9 7

5loc

Doubly Linked List – Remove
public void remove (DListNode loc)
{
DListNode nxt = loc.getNext();
DListNode prv = loc.getPrev();
if (prv != null)

prv.setNext(nxt);
}

6

Lists vs. Arrays

• Arrays are better at random access
– I.e give me the 4th element in the collection

• Linked lists are better for internal additions and
deletions
– I.e. delete the 5th element

• Doubly linked lists are better if you need to iterate
backwards

• Lists perform dynamic sizing
– It is expensive for arrays to resize themselves

dynamically

Summary

• Doubly Linked Lists
• DListNode
• Operations

– Add
– Find
– Remove

• Linked Lists vs. Arrays

