
1

Linked List I

Reminder

• Project 1
– If not already picked up, do so after class.
– Still have some Exam 1’s left

• Project 2
– Due this Sunday

• Submit early!
• Submit often!

– Miss the minimum? Please see me after class.

– Questions?

Exam 2

• Will return and review tomorrow.

Announcement

• Final Exam
– Wednesday, February 25, 2004
– 8:00am – 10:00 am
– 70-3435

Any questions Before we start linked lists

• As promised
– The hashing applet.

2

Plan for today

• Introduction to linked list
• Testing tips

Linked Lists
• Sequence of elements

– arranged one after the other
– Each element has

• Some piece of data
• a link to the next element in the sequence
• The “next” link for the last element is null.

– Basic linked list need not be sorted.

3 9 7

Linked Lists

• Implementation
– Like with trees, a list can be seen as a collection

of “nodes”
– The head of a list is the first node in the list
– The tail of a list is the last node in the list.

3 9 7

node

head tail

Linked Lists

• Implementation

public class ListNode {
Object data;
ListNode next;

}

ListNodes

• Operations on ListNodes
– Constructor

• initialData – data to be placed in the node
• initialNext – reference to the node that is after this node in the

list
– Get Methods

• Object getData()
• ListNode getNext()

– Set Methods
• setData(Object O)
• setNext (ListNode N)

Linked List

• Let’s create a simple list:

// Add the 7
ListNode head = new ListNode (new Integer(7), null);

// Add the 9
head = new ListNode (new Integer(9), head);

// Add the 3
head = new ListNode (new Integer(3), head);

3

9
head

7

3

Linked List

• Let’s create a simple list (another way)

// Add the 3
ListNode head = new ListNode (new Integer(3), null);
ListNode tail = head;

// Add the 9
ListNode tmp = new ListNode (new Integer(9), null);
tail.setNext (tmp);
tail = tmp;

// Add the 7
tmp = new ListNode (new Integer(7), null);
tail.setNext (tmp);
tail = tmp;

3

head tail

9
tmp

7

Linked List

• Operations on entire list
– Find
– Add
– Remove

Linked List – Find

• Finding an item in a linked list
– Basic idea

• Start at head of the list
• Follow the links until

– Object searched for is found or
– End of the list is reached.

3 9 7

head

Linked List – Find
public ListNode find (ListNode head, Object

target)
{

ListNode found = null;
ListNode cur = head;
while ((found == null) && (cur != null)) {

if (target.equals (cur.getData())
found = cur;

else
cur = cur.getNext();

}
return found

}

Linked List – Add

• Adding will depend on where you wish to
add the new node
– Add before the head of the list
– Add to the interior of the list

Linked List – Add

• Adding before the head of the list
– Make the new node the new head

3 9 7

head
5

4

Linked List – Add
// Add the 7
ListNode head = new ListNode (new Integer(7), null);

// Add the 9
head = new ListNode (new Integer(9), head);

// Add the 3
head = new ListNode (new Integer(3), head);

Linked List – Add

• Adding to the interior of the list
– Need a reference to the node before the location of the new node

(loc)

– New node’s next will point to whatever loc’s next is pointing to
– loc.next will point to new node

3 9 7

5loc

Linked List – Add
public void addAfter (ListNode loc,
Object target)

{
ListNode tmp = new ListNode (target,

loc.getNext();

loc.setNext(tmp);

}

Linked List – Add

• Note that this also works if adding to the
end of the list

3 9 7

5

loc

Linked List – Remove

• Remove will depend on where the node you
wish to remove is
– Removing the node at the head of the list
– Removing an interior node.

Linked List – Remove

• Removing the node at the head of the list
– Have the head point to the node after the old

head
•head = head.getNext();

3 9 7

head
5

5

Linked List – Remove

• Removing an interior node
– Need a reference to the node before the node to be deleted (loc)
– Loc’s next will point to whatever the deleted node’s next was

pointing to.

3 9 7

5loc

Linked List – Remove
public void removeAfter (ListNode loc)
{
ListNode del = loc.getNext();
if (del != null)

loc.setNext(del.getNext());
}

Summary

• Linked Lists
• ListNode
• Operations

– Add
– Find
– Remove

Linked List – Remove

• Remove is a bit awkward
– Suppose we want to remove the node returned

by find.
• We’ll need to maintain a pointer to the node before

this node.
• Very cumbersome.
• Possible solution

– Have a node have a pointer to it’s previous element in the
list as well.

– Doubly-linked list

